Catabolic mediators from TLR2-mediated proteoglycan aggrecan peptide-stimulated chondrocytes are reduced by Lactobacillus-conditioned media

In osteoarthritis (OA), extracellular matrix (ECM) digestion by cartilage-degrading enzymes drives cartilage destruction and generates ECM fragments, such as proteoglycan aggrecan (PG) peptides. PG peptides have been shown to induce immunological functions of chondrocytes. However, the role of PG pe...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 14; no. 1; pp. 18043 - 15
Main Authors: Sengprasert, Panjana, Waitayangkoon, Palapun, Kamenkit, Ousakorn, Sawatpanich, Ajcharaporn, Chaichana, Thiamjit, Wongphoom, Jutamas, Ngarmukos, Srihatach, Taweevisit, Mana, Lotinun, Sutada, Tumwasorn, Somying, Tanavalee, Aree, Reantragoon, Rangsima
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 05-08-2024
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In osteoarthritis (OA), extracellular matrix (ECM) digestion by cartilage-degrading enzymes drives cartilage destruction and generates ECM fragments, such as proteoglycan aggrecan (PG) peptides. PG peptides have been shown to induce immunological functions of chondrocytes. However, the role of PG peptides in stimulating catabolic mediators from chondrocytes has not been investigated. Therefore, we aim to determine the effects and its mechanism by which PG peptides induce chondrocytes to produce catabolic mediators in OA. Human chondrocytes were stimulated with IFNγ and various PG peptides either (i) with or (ii) without TLR2 blockade or (iii) with Lactobacillus species-conditioned medium (LCM), a genus of bacteria with anti-inflammatory properties. Transcriptomic analysis, cartilage-degrading enzyme production and TLR2-intracellular signaling activation were investigated. Chondrocytes treated with PG peptides p16-31 and p263-280 increased expression levels of genes associated with chondrocyte hypertrophy, cartilage degradation and proteolytic enzyme production. TLR2 downstream signaling proteins (STAT3, IkBα and MAPK9) were significantly phosphorylated in p263-280 peptide-stimulated chondrocytes. MMP-1 and ADAMTS-4 were significantly reduced in p263-280 peptides-treated condition with TLR2 blockade or LCM treatment. Phosphorylation levels of IkBa, ERK1/2 and MAPK9 were significantly decreased with TLR2 blockade, but only phosphorylation levels of MAPK9 was significantly decreased with LCM treatment. Our study showed that PG peptide stimulation via TLR2 induced cartilage-degrading enzyme production via activation of MAPK, NFκB and STAT3 pathways.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-68404-9