Time-resolved scanning tunnelling microscopy for molecular science

Time-resolved scanning tunnelling microscopy (STM) and its application in molecular science are reviewed. STM can image individual atoms and molecules and thus is able to observe the results of molecular processes such as diffusion, desorption, configuration switching, bond-breaking and chemistry, o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Condensed matter Vol. 22; no. 26; p. 264001
Main Author: Sloan, P A
Format: Journal Article
Language:English
Published: England 07-07-2010
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Time-resolved scanning tunnelling microscopy (STM) and its application in molecular science are reviewed. STM can image individual atoms and molecules and thus is able to observe the results of molecular processes such as diffusion, desorption, configuration switching, bond-breaking and chemistry, on the atomic scale. This review will introduce time-resolved STM, its experimental limitations and implementations with particular emphasis on thermally activated and tunnelling current induced molecular processes. It will briefly examine the push towards ultrafast imaging. In general, results achieved by time-resolved STM demonstrate the necessity of both space and time resolution for fully characterizing molecular processes on the atomic scale.
ISSN:1361-648X
DOI:10.1088/0953-8984/22/26/264001