Stray Inductance Reduction of Commutation Loop in the P-cell and N-cell-Based IGBT Phase Leg Module

This paper proposes a novel packaging method for insulated-gate bipolar transistor (IGBT) modules based on the concepts of P-cell and N-cell. The novel packaging reduces the stray inductance in the current commutation path in a phase-leg module and hence improves the switching behavior. A P-cell- an...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power electronics Vol. 29; no. 7; pp. 3616 - 3624
Main Authors: Shengnan Li, Tolbert, Leon M., Fei Wang, Fang Zheng Peng
Format: Journal Article
Language:English
Published: New York, NY IEEE 01-07-2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes a novel packaging method for insulated-gate bipolar transistor (IGBT) modules based on the concepts of P-cell and N-cell. The novel packaging reduces the stray inductance in the current commutation path in a phase-leg module and hence improves the switching behavior. A P-cell- and N-cell-based module and a conventional module are designed. Using finite-element-analysis-based Ansys Q3D Extractor, electromagnetic simulations are conducted to extract the stray inductance from the two modules. Two prototype phase-leg modules based on the two different designs are fabricated. The parasitics are measured using a precision impedance analyzer. Finally, a double pulse tester based-switching characterization is performed to illustrate the effect of stray inductance reduction in the proposed packaging design. The experimental results show the reduction in overshoot voltage with the proposed layout.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2013.2279258