A human activity recognition method based on Vision Transformer
Human activity recognition has a wide range of applications in various fields, such as video surveillance, virtual reality and human–computer intelligent interaction. It has emerged as a significant research area in computer vision. GCN (Graph Convolutional networks) have recently been widely used i...
Saved in:
Published in: | Scientific reports Vol. 14; no. 1; pp. 15310 - 18 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
03-07-2024
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Human activity recognition has a wide range of applications in various fields, such as video surveillance, virtual reality and human–computer intelligent interaction. It has emerged as a significant research area in computer vision. GCN (Graph Convolutional networks) have recently been widely used in these fields and have made great performance. However, there are still some challenges including over-smoothing problem caused by stack graph convolutions and deficient semantics correlation to capture the large movements between time sequences. Vision Transformer (ViT) is utilized in many 2D and 3D image fields and has surprised results. In our work, we propose a novel human activity recognition method based on ViT (HAR-ViT). We integrate enhanced AGCL (eAGCL) in 2s-AGCN to ViT to make it process spatio-temporal data (3D skeleton) and make full use of spatial features. The position encoder module orders the non-sequenced information while the transformer encoder efficiently compresses sequence data features to enhance calculation speed. Human activity recognition is accomplished through multi-layer perceptron (MLP) classifier. Experimental results demonstrate that the proposed method achieves SOTA performance on three extensively used datasets, NTU RGB+D 60, NTU RGB+D 120 and Kinetics-Skeleton 400. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-024-65850-3 |