Recent Progress in Nanomaterial Enabled Chemical Sensors for Wearable Environmental Monitoring Applications

In the present era of the Internet of Things, wearable sensors have been receiving considerable attention owing to their great potential in a plethora of applications. Highly sensitive chemical type wearable sensors that can conformably adhere to the epidermis or textiles for monitoring personal mic...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials Vol. 30; no. 51
Main Authors: Mamun, Md Abdulla Al, Yuce, Mehmet Rasit
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc 01-12-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present era of the Internet of Things, wearable sensors have been receiving considerable attention owing to their great potential in a plethora of applications. Highly sensitive chemical type wearable sensors that can conformably adhere to the epidermis or textiles for monitoring personal microenvironment have gained incredible interest. Attributable to the large surface area and excellent mechanical, chemical, physical, thermal as well as biocompatible properties, nanomaterials have become a prominent building block to develop wearable sensors. In this review, recent progress in the development of nanomaterial enabled wearable chemical environmental sensors (WCESs) is presented by focusing on the chemistry‐based transduction principles. The developments in sensor structures, selection of materials, and fabrication methods are highlighted. The recent WCESs are summarized by grouping in three major types according to their transduction principles: electrical, photochemical, and electrochemical. In addition, sensors with multimodal sensing capability as well as sensors immobilized in wireless tags are summarized. Finally, issues, challenges, and future perspectives are discussed to develop next‐generation WCESs with long life, biocompatibility, self‐healing, and real‐time communication capabilities. Owing to the outstanding chemical, mechanical, as well as thermal characteristics and large surface areas, wearable sensors comprising nanomaterial‐based substrates, electrodes, and active layers have emerged as a leading solution for the monitoring of one's ambient microenvironment. Several chemistry‐based transduction methods along with advanced fabrication techniques have the capability to produce environmental sensors with excellent sensitivity, selectivity, and responsivity.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.202005703