Positional cloning of jcpk/bpk locus of the mouse
By positional cloning techniques, we have identified the gene that is disrupted in the jcpk and bpk mouse models for polycystic kidney disease. This gene is the mouse homolog of the Drosophila Bicaudal C gene. Both of these mutations have been mapped to a very short stretch of Chromosome (Chr) 10. B...
Saved in:
Published in: | Mammalian genome Vol. 14; no. 4; pp. 242 - 249 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Springer Nature B.V
01-04-2003
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | By positional cloning techniques, we have identified the gene that is disrupted in the jcpk and bpk mouse models for polycystic kidney disease. This gene is the mouse homolog of the Drosophila Bicaudal C gene. Both of these mutations have been mapped to a very short stretch of Chromosome (Chr) 10. By sequencing the bicaudal C gene, Bicc1, in these models, it was found that the jcpk mutation results in a shortened and abnormal transcript, whereas the bpk mutation results in an abnormal 3' coding region. In Drosophila, this gene encodes a protein known to influence developmental processes. The mammalian homolog contains three KH (K homology) domains and a SAM (sterile alpha motif) domain and is expressed in the developing embryo, indicating that it may be important in RNA-binding and/or protein interactions during embryogenesis. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0938-8990 1432-1777 |
DOI: | 10.1007/s00335-002-2241-0 |