Shear Behavior of Geopolymer Concrete Slender Beams
This study investigates the shear behavior of slender steel-reinforced geopolymer concrete (GPC) beams with the shear span to effective depth ratio (a/d) of 4.5 and 5.0. To investigate the effect of shear reinforcement, two ordinary Portland cement concrete (OPC) beams and two GPC beams without shea...
Saved in:
Published in: | Buildings (Basel) Vol. 13; no. 5; p. 1191 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
29-04-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study investigates the shear behavior of slender steel-reinforced geopolymer concrete (GPC) beams with the shear span to effective depth ratio (a/d) of 4.5 and 5.0. To investigate the effect of shear reinforcement, two ordinary Portland cement concrete (OPC) beams and two GPC beams without shear reinforcement, and two OPC beams and two GPC beams reinforced with shear stirrups were cast. All beams were 150 mm wide and 225 mm deep with lengths of 1770 mm (a/d=4.5) and 1950 mm (a/d=5). The beams were tested under a three-point bending test. The experimental results showed that OPC and GPC beams without and with shear reinforcements exhibited similar crack propagation and failure mechanism. The midspan deflections of GPC beams were greater than OPC beams. The normalized shear resistance of OPC and GPC beams with a/d ratio 4.5 was greater than 4% and 30%, respectively, than beams with a/d ratio 5. OPC beams showed a greater decrease in shear resistance with an increasing a/d ratio compared to GPC beams. The shear resistances computed using empirical relationships available in various OPC design codes including AC1-318-14, AC1-318-19, fib-10 and JSCE-07 underestimated the experimental shear resistance of both OPC and GPC beams. In addition, the environmental assessment of OPC and GPC beams exhibited that GPC beams emit about 34% lower embodied CO2 emissions than OPC beams. |
---|---|
ISSN: | 2075-5309 2075-5309 |
DOI: | 10.3390/buildings13051191 |