Dynamic Thermal Clock Skew Compensation Using Tunable Delay Buffers

The thermal gradients existing in high-performance circuits may significantly affect their timing behavior, in particular, by increasing the skew of the clock net and/or altering hold/setup constraints, possibly causing the circuit to operate incorrectly. The knowledge of the spatial distribution of...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on very large scale integration (VLSI) systems Vol. 16; no. 6; pp. 639 - 649
Main Authors: Chakraborty, A., Duraisami, K., Sathanur, A., Sithambaram, P., Benini, L., Macii, A., Macii, E., Poncino, M.
Format: Journal Article Conference Proceeding
Language:English
Published: Piscataway, NJ IEEE 01-06-2008
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The thermal gradients existing in high-performance circuits may significantly affect their timing behavior, in particular, by increasing the skew of the clock net and/or altering hold/setup constraints, possibly causing the circuit to operate incorrectly. The knowledge of the spatial distribution of temperature can be used to properly design a clock network that is able to compensate such thermal non-uniformities. However, redesign of the clock network is effective only if temperature distribution is stationary, i.e., does not change over time. In this paper, we specifically address the problem of dynamically modifying the clock tree in such a way that it can compensate for temporal variations of temperature. This is achieved by exploiting the buffers that are inserted during the clock network generation, by transforming them into tunable delay elements. Temperature-induced delay variations are then compensated by applying the proper tuning to the tunable buffers, which is computed offline and stored in a tuning table inserted in the design. We propose an algorithm to minimize the number of inserted tunable buffers, as well as their tunable range (which directly relates to complexity). Results show that clock skew is kept within original bounds with worst-case power and area penalty of 3.5% and 5.5% respectively.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1063-8210
1557-9999
DOI:10.1109/TVLSI.2008.2000248