Ultrafast All-Optical Signal Processing Based on Single Semiconductor Optical Amplifier and Optical Filtering
We propose and demonstrate several all-optical signal-processing technologies, including wavelength conversion (WC), leading/trailing edge detection, and logic gates based on a semiconductor optical amplifier (SOA) and a detuning optical bandpass filter (OBF). The system is based on pump-probe schem...
Saved in:
Published in: | IEEE journal of selected topics in quantum electronics Vol. 14; no. 3; pp. 770 - 778 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-05-2008
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose and demonstrate several all-optical signal-processing technologies, including wavelength conversion (WC), leading/trailing edge detection, and logic gates based on a semiconductor optical amplifier (SOA) and a detuning optical bandpass filter (OBF). The system is based on pump-probe scheme. When the pump signal is return-to-zero (RZ) format, both inverted WC and noninverted WC at 40 Gb/s are obtained, and the polarity variation is highly dependent on the OBF detuning. When the pump signal is nonreturn-to-zero (NRZ) format, both the inverted WC and leading/trailing edge detection are obtained. In the inverted WC, the OBF detuning is small, and it helps to accelerate the amplitude recovery. However, in the noninverted WC and pulse edge detection, the OBF detuning is relatively large, and it acts as frequency-amplitude conversion. Finally, we present all- optical reconfigurable logic gates based on various nonlinearities in an SOA. The logic gates including AND, NOR/NOT, and OR are obtained by four-wave mixing, cross-gain modulation, and transient cross-phase modulation in the SOA, respectively. The NOR and OR gates are capable of operating at 40 Gb/s with the help of the OBF detuning. The XNOR gate is implemented by combining the AND output and NOR output. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1077-260X 1558-4542 |
DOI: | 10.1109/JSTQE.2008.916248 |