Classification of Energy Levels in Quantum Dot Structures by Depleted Layer Spectroscopy
The coexistence of quantum confined energy levels and defect energy levels in quantum dot (QD) structures may cause difficulties in distinguishing between their different origin when using deep-level transient spectroscopy (DLTS). Using InAs/GaAs QDs as demonstration vehicles, we present methodologi...
Saved in:
Published in: | Journal of electronic materials Vol. 39; no. 6; pp. 766 - 772 |
---|---|
Main Authors: | , , |
Format: | Journal Article Conference Proceeding |
Language: | English |
Published: |
Boston
Springer US
01-06-2010
Springer Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The coexistence of quantum confined energy levels and defect energy levels in quantum dot (QD) structures may cause difficulties in distinguishing between their different origin when using deep-level transient spectroscopy (DLTS). Using InAs/GaAs QDs as demonstration vehicles, we present methodologies to obtain such a classification by DLTS. QD-related spectra measured as a function of repetition frequency of electrical pulses,
f
, or temperature,
T
, and reverse voltage,
V
R
, are depicted as contour plots on (
f
,
V
R
) and (
T
,
V
R
) planes, thus reflecting the complex thermal and tunneling emission of electrons from the ground and excited states. Defect-related levels give rise to different contour patterns and undergo modification, exhibiting double-peak structured emission when defects are agglomerated in the vicinity of the QD plane. This effect is interpreted in terms of an interaction between electron states in traps and the confined QD states. |
---|---|
ISSN: | 0361-5235 1543-186X 1543-186X |
DOI: | 10.1007/s11664-010-1125-4 |