Design and development of a neutron/X-ray combined computed tomography system at Missouri S&T

A new method for non-destructive analysis has been developed using a combined neutron/X-ray imaging system at the Missouri Science & Technology Reactor (MSTR). The interactions of neutrons and X-ray photons with matter produce differing characteristic information, resulting in distinctly differe...

Full description

Saved in:
Bibliographic Details
Published in:Journal of radioanalytical and nuclear chemistry Vol. 296; no. 2; pp. 799 - 806
Main Authors: Sinha, Vaibhav, Avachat, Ashish V., Lee, Hyoung K.
Format: Journal Article
Language:English
Published: Dordrecht Springer Netherlands 01-05-2013
Springer
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new method for non-destructive analysis has been developed using a combined neutron/X-ray imaging system at the Missouri Science & Technology Reactor (MSTR). The interactions of neutrons and X-ray photons with matter produce differing characteristic information, resulting in distinctly different visual images. In order to obtain a more comprehensive picture of the structural and compositional data for a desired object, a prototype imaging system has been designed which utilizes neutron and X-ray imaging simultaneously without obstructing the beam geometry for each imaging mechanism. The current system is optimized for the imaging of small to medium sized objects of 0.5–50 mm. This new imaging capability in place at the MSTR promises great advances in the field of non-destructive testing, especially for nuclear engineering, nuclear medical science, and material science research. In an imaging object, a range of atomic number values and thermal cross-sections may be present. Where multiple materials having similar atomic number and differing thermal cross-section or vice versa may be present, exclusive neutron or X-ray analysis may exhibit shortcomings in distinguishing interfaces. However, fusing the neutron image and X-ray image into a combined image offers the strengths of both and may provide a superior method of analysis. In this paper, a novel combined X-ray and neutron imaging system will be introduced for superior analysis of certain imaging objects. Design details of experimental set-up and examples of preliminary imaging tests from individual modality will be detailed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0236-5731
1588-2780
DOI:10.1007/s10967-012-2062-x