Autophagy-related cell death by pan-histone deacetylase inhibition in liver cancer
Autophagy is a homeostatic, catabolic degradation process and cell fate essential regulatory mechanism. Protracted autophagy triggers cell death; its aberrant function is responsible for several malignancies. Panobinostat, a potent pan-deacetylase inhibitor, causes endoplasmic reticulum stress-induc...
Saved in:
Published in: | Oncotarget Vol. 7; no. 20; pp. 28998 - 29010 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Impact Journals LLC
17-05-2016
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Autophagy is a homeostatic, catabolic degradation process and cell fate essential regulatory mechanism. Protracted autophagy triggers cell death; its aberrant function is responsible for several malignancies. Panobinostat, a potent pan-deacetylase inhibitor, causes endoplasmic reticulum stress-induced cell death. The aim of this study was to investigate the role of autophagy in deacetylase inhibitor-triggered liver cancer cell death.HepG2 (p53wt) and Hep3B (p53 null) liver cancer cell lines were exposed to panobinostat. RT-qPCR and western blot confirmed autophagic factor modulation. Immuno-fluorescence, -precipitation and -histochemistry as well as transmission electron microscopy verified autophagosome formation. The cytotoxicity of panobinostat and autophagy modulators was detected using a real time cell viability assay.Panobinostat induced autophagy-related factor expression and aggregation. Map1LC3B and Beclin1 were significantly over-expressed in HepG2 xenografts in nude mice treated with panobinostat for 4 weeks. Subcellular distribution of Beclin1 increased with the appearance of autophagosomes-like aggregates. Cytosolic loss of p53, in HepG2, and p73, in Hep3B cells, and a corresponding gain of their nuclear level, together with modulation of DRAM1, were observed. Autophagosome aggregation was visible after 6 h of treatment. Treatment of cells stably expressing GFP-RFPtag Map1LC3B resulted in aggregation and a fluorescence switch, thus confirming autophagosome formation and maturation. Tamoxifen, an inducer of autophagy, caused only a block in cell proliferation; but in combination with panobinostat it resulted in cell death.Autophagy triggers cell demise in liver cancer. Its modulation by the combination of tamoxifen and panobinostat could be a new option for palliative treatment of hepatocellular carcinoma. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1949-2553 1949-2553 |
DOI: | 10.18632/oncotarget.8585 |