Nogo Receptor 1 Limits Ocular Dominance Plasticity but not Turnover of Axonal Boutons in a Model of Amblyopia

The formation and stability of dendritic spines on excitatory cortical neurons are correlated with adult visual plasticity, yet how the formation, loss, and stability of postsynaptic spines register with that of presynaptic axonal varicosities is unknown. Monocular deprivation has been demonstrated...

Full description

Saved in:
Bibliographic Details
Published in:Cerebral cortex (New York, N.Y. 1991) Vol. 26; no. 5; pp. 1975 - 1985
Main Authors: Frantz, Michael G, Kast, Ryan J, Dorton, Hilary M, Chapman, Katherine S, McGee, Aaron W
Format: Journal Article
Language:English
Published: United States Oxford University Press 01-05-2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The formation and stability of dendritic spines on excitatory cortical neurons are correlated with adult visual plasticity, yet how the formation, loss, and stability of postsynaptic spines register with that of presynaptic axonal varicosities is unknown. Monocular deprivation has been demonstrated to increase the rate of formation of dendritic spines in visual cortex. However, we find that monocular deprivation does not alter the dynamics of intracortical axonal boutons in visual cortex of either adult wild-type (WT) mice or adult NgR1 mutant (ngr1-/-) mice that retain critical period visual plasticity. Restoring normal vision for a week following long-term monocular deprivation (LTMD), a model of amblyopia, partially restores ocular dominance (OD) in WT and ngr1-/- mice but does not alter the formation or stability of axonal boutons. Both WT and ngr1-/- mice displayed a rapid return of normal OD within 8 days after LTMD as measured with optical imaging of intrinsic signals. In contrast, single-unit recordings revealed that ngr1-/- exhibited greater recovery of OD by 8 days post-LTMD. Our findings support a model of structural plasticity in which changes in synaptic connectivity are largely postsynaptic. In contrast, axonal boutons appear to be stable during changes in cortical circuit function.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1047-3211
1460-2199
DOI:10.1093/cercor/bhv014