Development and Validation of a Comprehensive Synchronous Machine Model for a Real-Time Environment

A comprehensive model of a salient-pole synchronous machine is developed for a real-time environment. By obtaining the effective specific permeance of the machine from simple experimental measurements and the exact geometry of the rotor pole arc, a model is developed that includes the exact distribu...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on energy conversion Vol. 25; no. 1; pp. 34 - 48
Main Authors: Dehkordi, A.B., Neti, P., Gole, A.M., Maguire, T.L.
Format: Journal Article
Language:English
Published: New York IEEE 01-03-2010
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A comprehensive model of a salient-pole synchronous machine is developed for a real-time environment. By obtaining the effective specific permeance of the machine from simple experimental measurements and the exact geometry of the rotor pole arc, a model is developed that includes the exact distribution of windings and operating-point-dependent saturation. This model offers a superior simulated response of the machine for fault transients, as well as for steady-state harmonic behavior, and is suitable for the closed-loop testing of relays and controls. The inductances of the machine are computed using the modified winding function approach and validated using finite-element analysis. Finally, the performance of the model is validated under healthy and faulted conditions by comparison with tests on an actual machine.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0885-8969
1558-0059
DOI:10.1109/TEC.2009.2038530