Molecular mechanisms of 3,3′-dichlorobenzidine-mediated toxicity in HepG2 cells

3,3′‐Dichlorobenzidine (DCB) (CAS 91–94‐1), a synthetic, chlorinated, primary aromatic amine, is typically used as an intermediate in the manufacturing of pigments for printing inks, textiles, paints, and plastics. In this study, we found that DCB could significantly inhibit the cell viability of He...

Full description

Saved in:
Bibliographic Details
Published in:Environmental and molecular mutagenesis Vol. 55; no. 5; pp. 407 - 420
Main Authors: Chen, Lei-Chin, Wu, Jong-C., Tuan, Yen-Fan, Tseng, Yi-Kuan, Hseu, You-Cheng, Chen, Ssu-Ching
Format: Journal Article
Language:English
Published: United States Blackwell Publishing Ltd 01-06-2014
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:3,3′‐Dichlorobenzidine (DCB) (CAS 91–94‐1), a synthetic, chlorinated, primary aromatic amine, is typically used as an intermediate in the manufacturing of pigments for printing inks, textiles, paints, and plastics. In this study, we found that DCB could significantly inhibit the cell viability of HepG2 cells in a concentration‐dependent manner. Flow cytometry revealed that DCB induced G2/M‐phase arrest and apoptosis in HepG2 cells. DCB treatment dramatically induced the dissipation of mitochondrial membrane potential (Δψm) and enhanced the enzymatic activities of caspase‐9 and caspase‐3 whilst hardly affecting caspase‐8 activity. Furthermore, Western blotting indicated that DCB‐induced apoptosis was accompanied by the down‐regulation of Bcl‐2/Bax ratio. These results suggested that DCB led to cytotoxicity involving activation of mitochondrial‐dependent apoptosis through Bax/Bcl‐2 pathways in HepG2 cells. Furthermore, HepG2 cells treated with DCB showed significant DNA damage as supported by the concentration‐dependent increase in olive tail moments as determined by the comet assay and by concentration‐ and time‐dependent increase in histone H2AX phosphorylation (γ‐H2AX). Two‐dimensional‐difference gel electrophoresis (2D‐DIGE), combined with mass spectrometry (MS), was used to unveil the differences in protein expression between cells exposed to 25 µM or 100 µM of DCB for 24 hr and the control cells. Twenty‐seven differentially expressed proteins involved in DNA repair, unfolded protein response, metabolism, cell signaling, and apoptosis were identified. Among these, 14‐3‐3 theta, CGI‐46, and heat‐shock 70 protein 4 were confirmed using Western blot assay. Taken together, these data suggest that DCB is capable of inducing DNA damage and some cellular stress responses in HepG2 cells, thus eventually leading to cell death by apoptosis. Environ. Mol. Mutagen. 55:407–420, 2014. © 2014 Wiley Periodicals, Inc.
Bibliography:ArticleID:EM21858
istex:F897F499BCF86FA35AE11468D085D1D0567FA58B
ark:/67375/WNG-NBK097KS-K
Lei‐Chin Chen and Jong‐C. Wu contributed equally to this article.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0893-6692
1098-2280
DOI:10.1002/em.21858