A Single-Stage Single-Phase Transformer-Less Doubly Grounded Grid-Connected PV Interface

A transformer provides galvanic isolation and grounding of the photovoltaic (PV) array in a PV-fed grid-connected inverter. Inclusion of the transformer, however, may increase the cost and/or bulk of the system. To overcome this drawback, a single-phase, single-stage [no extra converter for voltage...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on energy conversion Vol. 24; no. 1; pp. 93 - 101
Main Authors: Patel, H., Agarwal, V.
Format: Journal Article
Language:English
Published: New York IEEE 01-03-2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A transformer provides galvanic isolation and grounding of the photovoltaic (PV) array in a PV-fed grid-connected inverter. Inclusion of the transformer, however, may increase the cost and/or bulk of the system. To overcome this drawback, a single-phase, single-stage [no extra converter for voltage boost or maximum power point tracking (MPPT)], doubly grounded, transformer-less PV interface, based on the buck-boost principle, is presented. The configuration is compact and uses lesser components. Only one (undivided) PV source and one buck-boost inductor are used and shared between the two half cycles, which prevents asymmetrical operation and parameter mismatch problems. Total harmonic distortion and DC component of the current supplied to the grid is low, compared to existing topologies and conform to standards like IEEE 1547. A brief review of the existing, transformer-less, grid-connected inverter topologies is also included. It is demonstrated that, as compared to the split PV source topology, the proposed configuration is more effective in MPPT and array utilization. Design and analysis of the inverter in discontinuous conduction mode is carried out. Simulation and experimental results are presented.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0885-8969
1558-0059
DOI:10.1109/TEC.2008.2006551