Characterization of proteins immunologically related to brain microtubule-associated protein MAP-1B in non-neural cells

Brain microtubule-associated protein MAP-1 is composed of at least two polypeptides, MAP-1A and MAP-1B, which are among the main components of the neural cytoskeleton. Specific monoclonal and polyclonal antibodies against MAP-1B stain nuclei, mitotic spindles, centrosomes and the cytoplasmic microtu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cell science Vol. 92; no. 4; pp. 607 - 620
Main Authors: DIAZ-NIDO, J, AVILA, J
Format: Journal Article
Language:English
Published: Cambridge Company of Biologists 01-04-1989
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Brain microtubule-associated protein MAP-1 is composed of at least two polypeptides, MAP-1A and MAP-1B, which are among the main components of the neural cytoskeleton. Specific monoclonal and polyclonal antibodies against MAP-1B stain nuclei, mitotic spindles, centrosomes and the cytoplasmic microtubule network of different non-neural cells studied by immunofluorescence microscopy. It appears that these cells contain two proteins of 325K and 220K (K = 10(3) Mr), which are immunologically related to brain MAP-1B. The 325K protein, which is localized to the cytoplasmic microtubule network, the centrosome and the mitotic spindle, seems to be structurally related to the neural MAP-1B, as judged from their similar peptide maps and phosphorylation patterns. The 220K protein, which is localized to the nuclear matrix in interphase cells and to the mitotic spindle in dividing cells, has a proteolytic profile different from that of neural MAP-1B and is phosphorylated to a much lesser extent than the 325K protein. Both proteins bind tubulin in vitro, which suggests that they may participate in microtubule assembly in vivo; the 325K protein could perform such a role during the entire cell cycle, while the 220K protein could be implicated in the formation of the mitotic spindle.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9533
1477-9137
DOI:10.1242/jcs.92.4.607