Full-length LTR retroelements in Capsicum annuum revealed a few species-specific family bursts with insertional preferences

Capsicum annuum is a species that has undergone an expansion of the size of its genome caused mainly by the amplification of repetitive DNA sequences, including mobile genetic elements. Based on information obtained from sequencing the genome of pepper, the estimated fraction of retroelements is app...

Full description

Saved in:
Bibliographic Details
Published in:Chromosome research Vol. 29; no. 3-4; pp. 261 - 284
Main Authors: Yañez-Santos, Anahí Mara, Paz, Rosalía Cristina, Paz-Sepúlveda, Paula Beatriz, Urdampilleta, Juan Domingo
Format: Journal Article
Language:English
Published: Dordrecht Springer Netherlands 01-12-2021
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Capsicum annuum is a species that has undergone an expansion of the size of its genome caused mainly by the amplification of repetitive DNA sequences, including mobile genetic elements. Based on information obtained from sequencing the genome of pepper, the estimated fraction of retroelements is approximately 81%, and previous results revealed an important contribution of lineages derived from Gypsy superfamily. However, the dynamics of the retroelements in the C. annuum genome is poorly understood. In this way, the present work seeks to investigate the phylogenetic diversity and genomic abundance of the families of autonomous (complete and intact) LTR retroelements from C. annuum and inspect their distribution along its chromosomes. In total, we identified 1151 structurally full-length retroelements (340 Copia; 811 Gypsy) grouped in 124 phylogenetic families in the base of their retrotranscriptase. All the evolutive lineages of LTR retroelements identified in plants were present in pepper; however, three of them comprise 83% of the entire LTR retroelements population, the lineages Athila, Del/Tekay, and Ale/Retrofit. From them, only three families represent 70.8% of the total number of the identified retroelements. A massive family-specific wave of amplification of two of them occurred in the last 0.5 Mya (GypsyCa_16; CopiaCa_01), whereas the third is more ancient and occurred 3.0 Mya (GypsyCa_13). Fluorescent in situ hybridization performed with family and lineage-specific probes revealed contrasting patterns of chromosomal affinity. Our results provide a database of the populations LTR retroelements specific to C. annuum genome. The most abundant families were analyzed according to chromosome insertional preferences, suppling useful tools to the design of retroelement-based markers specific to the species.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0967-3849
1573-6849
DOI:10.1007/s10577-021-09663-4