Structure and Composition of Historical Longleaf Pine Ecosystems in Mississippi, USA

Longleaf pine (Pinus palustris) historically was a widespread ecosystem composed of a simple tree canopy and grasslands ground layer. After widespread loss of this ecosystem due to logging and fire exclusion, little quantitative information exists about historical structure for restoration goals. We...

Full description

Saved in:
Bibliographic Details
Published in:Human ecology : an interdisciplinary journal Vol. 46; no. 2; pp. 241 - 248
Main Authors: Hanberry, Brice B., Coursey, Keith, Kush, John S.
Format: Journal Article
Language:English
Published: New York Springer 01-04-2018
Springer US
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Longleaf pine (Pinus palustris) historically was a widespread ecosystem composed of a simple tree canopy and grasslands ground layer. After widespread loss of this ecosystem due to logging and fire exclusion, little quantitative information exists about historical structure for restoration goals. We identified composition in De Soto National Forest and Pearl River County, Mississippi, USA, and density, basal area, and percent stocking in Pearl River County using General Land Office surveys and US Forest Service Forest Inventory and Analysis surveys. Historical longleaf ecosystems were about 85% pine, with lesser amounts of broadleaf evergreen and oak species. Densities were about 175 to 180 trees/ha, mean tree diameters were 45 cm, and stocking was around 60% to 65%, which suggested longleaf pines were closed woodlands. Current forests are 38% to 57% pine, primarily loblolly, while longleaf pine is 2% to 8% of composition. Indeed, current longleaf pine composition across the Coastal Plain averages 3% and does not reach 10% at smaller landscape scales. Fire-sensitive broadleaf species of water oak, sweetgum, yellow-poplar, and red maple increased from about 0.5% composition to 2% to 10% of composition. Forests became twice as dense, at about 280 trees/ha to 330 trees/ha, with mean tree diameters of 22 cm. These results characterize conversion from open old growth longleaf forests, resulting in part from human maintenance, to successional forests due to human disruption of the historical ecosystem. It is important to remember structure and composition of historical forests for restoration and recognize wholesale changes so that successional forests do not become the new social and cultural baseline.
ISSN:0300-7839
1572-9915
DOI:10.1007/s10745-018-9982-1