A Scalable ISFET Sensing and Memory Array With Sensor Auto-Calibration for On-Chip Real-Time DNA Detection
This paper presents a novel CMOS-based system-onchip with a 78 × 56 ion-sensitive field-effect transistor array using in-pixel quantization and compensation of sensor nonidealities. The pixel integrates sensing circuitry and memory cells to encode the ion concentration in time and store a calibratio...
Saved in:
Published in: | IEEE transactions on biomedical circuits and systems Vol. 12; no. 2; pp. 390 - 401 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
IEEE
01-04-2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a novel CMOS-based system-onchip with a 78 × 56 ion-sensitive field-effect transistor array using in-pixel quantization and compensation of sensor nonidealities. The pixel integrates sensing circuitry and memory cells to encode the ion concentration in time and store a calibration value per pixel. Temperature sensing pixels spread throughout the array allow temperature monitoring during the reaction. We describe the integration of the array as part of a lab-on-chip cartridge that plugs into a motherboard for power management, biasing, data acquisition, and temperature regulation. This forms a robust ion detection platform, which is demonstrated as a pH sensing system. We show that our calibration is able to perform readout with a linear spread of 0.3% and that the system exhibits a high pH sensitivity of 3.2 μs/pH. The complete system is shown to perform on-chip realtime DNA amplification and detection of lambda phage DNA by loop-mediated isothermal amplification. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1932-4545 1940-9990 |
DOI: | 10.1109/TBCAS.2017.2789161 |