Preparation and performance evaluation of non-foaming styrene-acrylic latex for cementing slurry

The latex used conventionally for oil-well cementing can lead to serious foaming issues in the cement slurry, which not only affects the accurate measurement of the density of the latex-containing cement slurry, but also is detrimental to cementing construction. A large amount of a foam stabilizer u...

Full description

Saved in:
Bibliographic Details
Published in:Royal Society open science Vol. 10; no. 2; p. 221319
Main Authors: Guo, Shenglai, Li, Ming, Li, Sihe, Zhao, Jiaxin, Bu, Yuhuan, Liu, Huajie, Wang, Yindong
Format: Journal Article
Language:English
Published: England The Royal Society 01-02-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The latex used conventionally for oil-well cementing can lead to serious foaming issues in the cement slurry, which not only affects the accurate measurement of the density of the latex-containing cement slurry, but also is detrimental to cementing construction. A large amount of a foam stabilizer used for latex preparation is mainly responsible for foaming of the latex-containing cement slurry. In this study, soap-free emulsion polymerization was conducted using 2-acrylamido-2-methylpropanesulfonic acid (AMPS), styrene (St), and butyl acrylate (BA) as the reaction monomers and the effects of the AMPS dosage, monomer ratio, reaction temperature and stirring speed on the performance of the latex were investigated. The optimum synthesis conditions included a 30% monomer concentration, an St : BA : AMPS monomer ratio of 5 : 4 : 6, a synthesis temperature of 85°C, a stirring speed of 400 r.p.m. and 1.5% of the initiator. As-prepared latex exhibited good filtration loss control, excellent freeze-thaw stability, and extremely low foaming of the cement slurry with the added latex, which was extremely beneficial for on-site cementing construction.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article has been edited by the Royal Society of Chemistry, including the commissioning, peer review process and editorial aspects up to the point of acceptance.
ISSN:2054-5703
2054-5703
DOI:10.1098/rsos.221319