Augmenting the performance of photovoltaic panel by decreasing its temperature using various cooling techniques

The photovoltaic (PV) systems suffer efficiency drop and performance retrogression as their operating temperature increases. This research investigates the routine of polycrystalline silicon PV modules using dissimilar cooling techniques and compares the routine of the PV modules with and without co...

Full description

Saved in:
Bibliographic Details
Published in:Results in engineering Vol. 15; p. 100564
Main Authors: Nabil, Tamer, Mansour, Tamer M.
Format: Journal Article
Language:English
Published: Elsevier B.V 01-09-2022
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The photovoltaic (PV) systems suffer efficiency drop and performance retrogression as their operating temperature increases. This research investigates the routine of polycrystalline silicon PV modules using dissimilar cooling techniques and compares the routine of the PV modules with and without cooling. The available studied PV module output maximum power decreases by up to 0.42% for every one-degree increase in temperature. To investigate the cooling techniques, the experiments were done in July 2021 at the Faculty of Engineering, Ismailia, Egypt (30°35′N 32°16′E). The used cooling methods were; forced air cooling onto the PV module front surface by a direct current fan (case 1); back surface cooling by circulating a coolant in a heat exchanger copper serpentine fixed at the PV module back surface, water (case 2), and copper oxide nanofluid (0.2% mass fraction) (case 3) was used as different coolants in the serpentine; front surface cooling using water as a coolant that flows from small nozzles equally distributed along with the pipe fixes at the PV module frame (case 4). After comparing the recorded results of the four cooling techniques with a conventional system, cooling efficiency, the front PV module surface water cooling technique produced the best results. This technique is easy to be designed, manufactured, and installed. Also, it saves the cost of cleanliness of the surface of the PV module from dirt and dust. These cooling techniques increase the conventional PV system voltage output by 2.7%, 2.43%, 0.9%, and 7.43% and decrease in average temperature by 13.46%, 8.64%, 7.27%, and 29.37%, with an increase in PV energy conversion efficiency by 2.94%, 2.46%, 2.2% and 6.84% via using air cooling, water back cooling, nanofluid back cooling and waterfront cooling respectively. •PV solar panel efficiency decreases as the panel temperature increases.•Four cooling techniques effect on PV panel performance are tested.•As the panel temperature decreases its output voltage, power and efficiency increases.•Front surface cooling by forced water from distributed nozzles is the most efficient cooling technique.
ISSN:2590-1230
2590-1230
DOI:10.1016/j.rineng.2022.100564