Immunoreactive proopiomelanocortin (POMC) peptides and POMC-like messenger ribonucleic acid are present in many rat nonpituitary tissues

Immunoreactive (IR) POMC peptides have been found in several rat nonpituitary tissues. We found IR-ACTH, IR-beta-endorphin (beta END), and IR-gamma MSH in extracts from the following eight rat nonpituitary tissues, listed in order of decreasing POMC peptide concentrations: testis, duodenum, kidney,...

Full description

Saved in:
Bibliographic Details
Published in:Endocrinology (Philadelphia) Vol. 122; no. 6; p. 2648
Main Authors: DeBold, C R, Nicholson, W E, Orth, D N
Format: Journal Article
Language:English
Published: United States 01-06-1988
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Immunoreactive (IR) POMC peptides have been found in several rat nonpituitary tissues. We found IR-ACTH, IR-beta-endorphin (beta END), and IR-gamma MSH in extracts from the following eight rat nonpituitary tissues, listed in order of decreasing POMC peptide concentrations: testis, duodenum, kidney, colon, liver, lung, stomach, and spleen, but not in adrenal or muscle extracts. Concentrations were very low and ranged from less than 0.00003% to 0.0005% of pituitary levels. In testis, duodenum, and colon, IR-gamma MSH and IR-beta END concentrations were only 5-37% of IR-ACTH levels. Gel filtration chromatography showed that IR-ACTH and IR-beta END coeluted in a major peak of 15,000 daltons, which is slightly larger than expected for a C-terminal peptide containing rat ACTH and beta-lipotropin. There were also a minor higher mol wt peak of IR-ACTH and IR-beta END and a minor IR-beta END peak that eluted in the position of mature beta END. There was no peak of IR-ACTH that corresponded to the size of mature ACTH. To determine whether these nonpituitary tissues also contained a POMC-like mRNA, which would confirm that the peptides were synthesized locally within the tissues, we examined poly(A) RNA prepared from 10 nonpituitary tissues and total RNA from pituitary by Northern blot hybridization for the presence of a POMC-like mRNA with an exon 3 riboprobe. Pituitary contained a single POMC mRNA species of about 1000 nucleotides. A short POMC-like mRNA of about 800 bases was found in all nonpituitary tissues, except spleen and muscle. Compared to POMC mRNA levels in pituitary, the concentration of POMC-like mRNA was 0.5% in testis and 0.03-0.07% in the other tissues. The ratio of POMC-like mRNA to IR-POMC peptide concentrations in nonpituitary tissues was at least 1000 times greater than that in the pituitary. We conclude that the POMC gene is expressed in many nonpituitary tissues and that either the short POMC-like mRNA is translated much less efficiently or POMC peptides are released or degraded much more rapidly in nonpituitary tissues than in the pituitary.
ISSN:0013-7227
DOI:10.1210/endo-122-6-2648