Impact of Operational Parameters on Droplet Distribution Using an Unmanned Aerial Vehicle in a Papaya Orchard

Papaya production and export is increasingly expanding in the world market due to the nutritional importance of the fruit. Phytosanitary issues, labor shortages, and unevenness in land-based costal and motorized applications compromise crops, the environment, and humankind. The purpose of this study...

Full description

Saved in:
Bibliographic Details
Published in:Agronomy (Basel) Vol. 13; no. 4; p. 1138
Main Authors: Ribeiro, Luis Felipe Oliveira, Vitória, Edney Leandro da, Soprani Júnior, Gilson Geraldo, Chen, Pengchao, Lan, Yubin
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-04-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Papaya production and export is increasingly expanding in the world market due to the nutritional importance of the fruit. Phytosanitary issues, labor shortages, and unevenness in land-based costal and motorized applications compromise crops, the environment, and humankind. The purpose of this study was to evaluate the efficiency of droplet distribution using an unmanned aerial vehicle, with different application rates (12.0, 15.0, and 18.0 L ha−1) and spray nozzles (XR110015 and MGA015) in the upper (UL), middle (ML), and lower (LL) layers, and on papaya fruit clusters (BF). Water-sensitive paper labels and artificial targets were used to assess the efficiency. Coverage, density, droplet distribution, and droplet diameter were influenced by the application rates in the following order: 18.0 > 15.0 > 12.0 L ha−1, showing concentrated droplet distribution in the respective layers: UL > ML > LL > BF. The 18.0 L ha−1 rate increased the variables examined, and the droplet coverage on the UL using the XR110015 nozzle was 6.56 times greater than that found on the LL and BF. The MGA015 nozzle presented better results in the LL and BF in all variables analyzed. The UAVs were efficient in applying to the papaya crop and further studies should be carried out in order to confirm the efficacy of plant protection products applied using this technology.
ISSN:2073-4395
2073-4395
DOI:10.3390/agronomy13041138