Intravenous apoA-I/lecithin discs increase pre-beta-HDL concentration in tissue fluid and stimulate reverse cholesterol transport in humans

The extent to which plasma HDL concentration regulates reverse cholesterol transport (RCT) is not known. The principal acceptors of unesterified cholesterol (UC) from cultured cells are small pre-beta-HDL, which we have shown increase in plasma during intravenous infusion of apolipoprotein A-I/phosp...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lipid research Vol. 42; no. 10; pp. 1586 - 1593
Main Authors: Nanjee, M N, Cooke, C J, Garvin, R, Semeria, F, Lewis, G, Olszewski, W L, Miller, N E
Format: Journal Article
Language:English
Published: United States Elsevier 01-10-2001
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The extent to which plasma HDL concentration regulates reverse cholesterol transport (RCT) is not known. The principal acceptors of unesterified cholesterol (UC) from cultured cells are small pre-beta-HDL, which we have shown increase in plasma during intravenous infusion of apolipoprotein A-I/phosphatidylcholine (apoA-I/PC) discs in humans. We have now examined the effects on tissue fluid HDL and RCT. ApoA-I/PC or proapoA-I/PC discs were infused into 16 healthy males. Eleven had been given intravenous radiocholesterol to label tissue pools; in 12 prenodal leg lymph was collected throughout; and in 8 all feces were collected. The rise in small pre-beta-HDL in plasma was associated with increases in 1) pre-beta-HDL concentration in lymph (all subjects), 2) the size of other lymph HDL (four of four subjects), 3) the cholesterol content of lymph lipoproteins relative to plasma lipoproteins (P < 0.01, n = 4), 4) cholesterol-specific radioactivity in lymph (five of nine subjects), 5) plasma lathosterol (P < 0.004, n = 4), 6) plasma cholesterol esterification rate (P < 0.001, n = 4), and 7) fecal bile acid excretion (P < 0.001, n = 8). These results support the hypothesis that small pre-beta-HDL generated in plasma readily cross endothelium into tissue fluid, and thereby promote efflux of UC from peripheral cells. After delivery to the liver, peripheral cholesterol appears to be utilized more for bile acid synthesis than for biliary cholesterol secretion in humans.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-2275
DOI:10.1016/S0022-2275(20)32212-4