AMERICIUM IN THE BEAGLE DOG: BIOKINETIC AND DOSIMETRIC MODEL
A biokinetic model of the systemic distribution of americium in the beagle dog is presented. The model is based on a previous biokinetic model of plutonium. The data sets used for the development of the model were the measurements of excreted activity (urine and feces) and organ burdens (skeleton, l...
Saved in:
Published in: | Health physics (1958) Vol. 90; no. 5; pp. 459 - 470 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Health Physics Society
01-05-2006
Lippincott Williams & Wilkins Ovid Technologies |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A biokinetic model of the systemic distribution of americium in the beagle dog is presented. The model is based on a previous biokinetic model of plutonium. The data sets used for the development of the model were the measurements of excreted activity (urine and feces) and organ burdens (skeleton, liver, and other soft tissues) for different levels of initial injected activity. In developing the model, the compartmental structure of the skeleton of the plutonium model was adopted, and only the numerical values of parameters were adapted. The model well describes the fractions of americium in the skeleton, liver, and soft tissues and the total fraction excreted in urine and feces. The tuning of the liver clearance parameter provides a realistic description of the change in the partitioning between liver and skeleton for different injection levels. The most significant features of the biokinetics and dosimetry of americium and plutonium in beagles are compared. The total fractions of the clearance to the skeleton and the liver are roughly equal to the value for plutonium, but the partitioning of americium between these organs is reversed with respect to the partitioning of plutonium. Am doses to liver and skeleton are similar to Pu doses, owing to some counteracting factors. For the highest injection level, the liver mass is dependent on the time post injection. For the skeletal tissues, the dose to the cortical endosteum by far exceeds the dose to the trabecular endosteum and the red marrow. The model provides the basis for statistical survival analyses and risk estimates. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0017-9078 1538-5159 |
DOI: | 10.1097/01.HP.0000186998.03895.34 |