Commonality Autoencoder: Learning Common Features for Change Detection From Heterogeneous Images
Change detection based on heterogeneous images, such as optical images and synthetic aperture radar images, is a challenging problem because of their huge appearance differences. To combat this problem, we propose an unsupervised change detection method that contains only a convolutional autoencoder...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems Vol. 33; no. 9; pp. 4257 - 4270 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
IEEE
01-09-2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Change detection based on heterogeneous images, such as optical images and synthetic aperture radar images, is a challenging problem because of their huge appearance differences. To combat this problem, we propose an unsupervised change detection method that contains only a convolutional autoencoder (CAE) for feature extraction and the commonality autoencoder for commonalities exploration. The CAE can eliminate a large part of redundancies in two heterogeneous images and obtain more consistent feature representations. The proposed commonality autoencoder has the ability to discover common features of ground objects between two heterogeneous images by transforming one heterogeneous image representation into another. The unchanged regions with the same ground objects share much more common features than the changed regions. Therefore, the number of common features can indicate changed regions and unchanged regions, and then a difference map can be calculated. At last, the change detection result is generated by applying a segmentation algorithm to the difference map. In our method, the network parameters of the commonality autoencoder are learned by the relevance of unchanged regions instead of the labels. Our experimental results on five real data sets demonstrate the promising performance of the proposed framework compared with several existing approaches. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2162-237X 2162-2388 |
DOI: | 10.1109/TNNLS.2021.3056238 |