CuO–CeO2 catalysts synthesized in one-step: Characterization and PROX performance

PEM fuel cells seem to be the most affordable and commercially viable hydrogen-based cells, the biggest challenge being to obtain CO-free H2 (<100 ppm) as the fuel. In this study, the use of CuO–CeO2 catalysts in preferential oxidation of CO to obtain CO-free H2 (PROX reaction) was investigated....

Full description

Saved in:
Bibliographic Details
Published in:International journal of hydrogen energy Vol. 37; no. 7; pp. 5498 - 5507
Main Authors: Araújo, V.D., Bellido, J.D.A., Bernardi, M.I.B., Assaf, J.M., Assaf, E.M.
Format: Journal Article
Language:English
Published: Kidlington Elsevier Ltd 01-04-2012
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:PEM fuel cells seem to be the most affordable and commercially viable hydrogen-based cells, the biggest challenge being to obtain CO-free H2 (<100 ppm) as the fuel. In this study, the use of CuO–CeO2 catalysts in preferential oxidation of CO to obtain CO-free H2 (PROX reaction) was investigated. Ce1−xCuxO2 catalysts, with x (mol%) = 0, 0.01, 0.03, 0.05 and 0.10, were synthesized in one-step by the polymeric precursor method, to obtain a very fine dispersion and strong metal-support interaction, to favor active copper species and a preference for the PROX reaction. The results obtained from catalyzed reactions and characterization of the catalysts by XRD, Rietveld refinement, BET surface area, UV–Vis and TPR, suggest that this one-step synthesis method gives rise to catalysts with copper species selective for the PROX reaction, which reaches a maximum rate on Ce0.97Cu0.03O2 catalyst. [Display omitted] ► Synthesis of CuO/CeO2 catalysts by the one-step polymeric precursor method. ► 100% CO conversion on Ce0.97Cu0.03O2 catalyst. ► Monomeric surface and dipolar Cu2+ are responsible for the improved CO conversion.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0360-3199
1879-3487
DOI:10.1016/j.ijhydene.2011.12.143