Analytical analysis and finite element simulation of advanced membranes for silicon microphones

In this paper, advanced membrane designs are simulated in order to improve the sensitivity of micromachined silicon condenser microphones. Analytical analyzes and finite element simulations have been carried out to derive algebraic expressions for the mechanical compliance of corrugated membranes an...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal Vol. 5; no. 5; pp. 857 - 863
Main Authors: Fuldner, M., Dehe, A., Lerch, R.
Format: Journal Article
Language:English
Published: New York IEEE 01-10-2005
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, advanced membrane designs are simulated in order to improve the sensitivity of micromachined silicon condenser microphones. Analytical analyzes and finite element simulations have been carried out to derive algebraic expressions for the mechanical compliance of corrugated membranes and membranes supported at spring elements. It is shown that the compliance of both types of membranes can be modeled with the help of an enhanced theory of circular membranes. For spring membranes, a numerically derived and design dependent constant takes into account the reduced suspension. The mechanical stress in corrugated membranes is calculated using a geometrical model and is confirmed by finite element simulations. A very good agreement between theory and experimental results is demonstrated for spring membranes of different shape and for membranes with varying number of corrugations. In a silicon microphone application, a high electro-acoustical sensitivity up to 8.2 mV/Pa/V is achieved with a membrane diameter of only 1 mm.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2004.841449