Dimension of the intersection of a pair of orthogonal groups

Let g, h:V×V→ℂ be two non-degenerate symmetric bilinear forms on a finite-dimensional complex vector space V. Let G (resp. H) be the Lie group of isometries of g (resp. h). If the endomorphism L:V→V associated to g, h is diagonalizable, then the dimension of the intersection group G∩H is computed in...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computer mathematics Vol. 86; no. 10-11; pp. 1678 - 1683
Main Authors: Song, Seok-Zun, Díaz, R. Durán, Encinas, L. Hernández, Masqué, J. Muñoz, Dios, A. Queiruga
Format: Journal Article
Language:English
Published: Abingdon Taylor & Francis 01-11-2009
Taylor & Francis Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let g, h:V×V→ℂ be two non-degenerate symmetric bilinear forms on a finite-dimensional complex vector space V. Let G (resp. H) be the Lie group of isometries of g (resp. h). If the endomorphism L:V→V associated to g, h is diagonalizable, then the dimension of the intersection group G∩H is computed in terms of the dimensions of the eigenspaces of L.
ISSN:0020-7160
1029-0265
DOI:10.1080/00207160802706583