A Workflow for Uncertainty Assessment in Elemental Analysis of Archaeological Ceramics: A Case Study of Neolithic Coarse Pottery from Eastern Siberia

In this study, the assessment of uncertainties introduced at different stages of the elemental analysis of archaeological ceramics has been described using the example of the Neolithic pottery sherds from Popovsky Lug (eastern Siberia). To evaluate the uncertainty introduced by sampling due to ceram...

Full description

Saved in:
Bibliographic Details
Published in:Heritage Vol. 6; no. 5; pp. 4434 - 4450
Main Authors: Pashkova, Galina V., Statkus, Mikhail A., Mukhamedova, Maria M., Finkelshtein, Alexander L., Abdrashitova, Irina V., Belozerova, Olga Yu, Chubarov, Victor M., Amosova, Alena A., Maltsev, Artem S., Demonterova, Elena I., Shergin, Dmitriy L.
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-05-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, the assessment of uncertainties introduced at different stages of the elemental analysis of archaeological ceramics has been described using the example of the Neolithic pottery sherds from Popovsky Lug (eastern Siberia). To evaluate the uncertainty introduced by sampling due to ceramic heterogeneity, three original sherds were cut into small subsamples. Powdered subsamples (250–350 mg) were analyzed using wavelength-dispersive X-ray fluorescence and inductively coupled plasma mass spectrometry methods, and the variations between analytical results for independent subsamples were compared with the variations introduced during the analytical process (measurement and sample preparation). It was shown that 250–350 mg of ceramic is sufficient to obtain good reproducibility (2–15%) between separate subsamples for most major and trace elements, even for the heterogeneous Neolithic ceramics included in this study. The differing behavior of concentration variations in some elements was explained by measuring the ceramic cross-sections by scanning electron microscopy and micro-X-ray fluorescence spectrometry, as well as by the theoretic modeling of the sampling error. The described workflow can be useful in finding uncertainties in elemental analysis results, which may affect the interpretation of bulk chemical composition in ceramic provenance studies.
ISSN:2571-9408
2571-9408
DOI:10.3390/heritage6050234