Cutting forces modeling considering the effect of tool thermal property—application to CBN hard turning
Force modeling in metal cutting is important for a multitude of purposes, including thermal analysis, tool life estimation, chatter prediction, and tool condition monitoring. Numerous approaches have been proposed to model metal cutting forces with various degrees of success. In addition to the effe...
Saved in:
Published in: | International journal of machine tools & manufacture Vol. 43; no. 3; pp. 307 - 315 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford
Elsevier Ltd
01-02-2003
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Force modeling in metal cutting is important for a multitude of purposes, including thermal analysis, tool life estimation, chatter prediction, and tool condition monitoring. Numerous approaches have been proposed to model metal cutting forces with various degrees of success. In addition to the effect of workpiece materials, cutting parameters, and process configurations, cutting tool thermal properties can also contribute to the level of cutting forces. For example, a difference has been observed for cutting forces between the use of high and low CBN content tools under identical cutting conditions. Unfortunately, among documented approaches, the effect of tool thermal property on cutting forces has not been addressed systemically and analytically. To model the effect of tool thermal property on cutting forces, this study modifies Oxley’s predictive machining theory by analytically modeling the thermal behaviors of the primary and the secondary heat sources. Furthermore, to generalize the modeling approach, a modified Johnson–Cook equation is applied in the modified Oxley’s approach to represent the workpiece material property as a function of strain, strain rate, and temperature. The model prediction is compared to the published experimental process data of hard turning AISI H13 steel (52 HRc) using either low CBN content or high CBN content tools. The proposed model and finite element method (FEM) both predict lower thrust and tangential cutting forces and higher tool–chip interface temperature when the lower CBN content tool is used, but the model predicts a temperature higher than that of the FEM. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0890-6955 1879-2170 |
DOI: | 10.1016/S0890-6955(02)00185-2 |