Species differences in bile acids I. Plasma and urine bile acid composition

Maintenance of bile acid (BA) homeostasis is essential to achieve their physiologic functions and avoid their toxic effects. The marked differences in BA composition between preclinical safety models and humans may play a major role in the poor prediction of drug‐induced liver injury using preclinic...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied toxicology Vol. 38; no. 10; pp. 1323 - 1335
Main Authors: Thakare, Rhishikesh, Alamoudi, Jawaher Abdullah, Gautam, Nagsen, Rodrigues, A. David, Alnouti, Yazen
Format: Journal Article
Language:English
Published: England Wiley Subscription Services, Inc 01-10-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Maintenance of bile acid (BA) homeostasis is essential to achieve their physiologic functions and avoid their toxic effects. The marked differences in BA composition between preclinical safety models and humans may play a major role in the poor prediction of drug‐induced liver injury using preclinical models. We compared the composition of plasma and urinary BAs and their metabolites between humans and several animal species. Total BA pools and their composition varied widely among different species. Highest sulfation of BAs was observed in human and chimpanzee. Glycine amidation was predominant in human, minipig, hamster and rabbit, while taurine amidation was predominant in mice, rat and dogs. BA profiles consisted primarily of tri‐OH BAs in hamster, rat, dog and mice, di‐OH BAs in human, rabbit and minipig, and mono‐OH BA in chimpanzee. BA profiles comprised primarily hydrophilic and less toxic BAs in mice, rat, pig and hamster, while it primarily comprised hydrophobic and more toxic BAs in human, rabbit and chimpanzee. Therefore, the hydrophobicity index was lowest in minipig and mice, while it was highest in rabbit, monkey and human. Glucuronidation and glutathione conjugation were low in all species across all BAs. Total concentration of BAs in urine was up to 10× higher and more hydrophilic than plasma in most species. This was due to the presence of more tri‐OH, amidated, sulfated and primary BAs, in urine compared to plasma. In general, BA profiles of chimpanzee and monkeys were most similar to human, while minipig, rat and mice were most dissimilar to human. The marked differences in bile acid (BA) composition between preclinical safety models and humans may play a major role in the poor prediction of drug‐induced liver injury. We compared the composition of plasma and urinary BAs and their metabolites between humans and several animal species. BA profiles varied widely among different species and it comprised primarily hydrophilic and less toxic BAs in mice, rat, pig and hamster, while it primarily comprised hydrophobic and more toxic BAs in human, rabbit and chimpanzee. In general, BA profiles of chimpanzee and monkeys were most similar to humans, while minipig, rat and mice were most dissimilar to humans.
AbstractList Maintenance of bile acid (BA) homeostasis is essential to achieve their physiologic functions and avoid their toxic effects. The marked differences in BA composition between preclinical safety models and humans may play a major role in the poor prediction of drug‐induced liver injury using preclinical models. We compared the composition of plasma and urinary BAs and their metabolites between humans and several animal species. Total BA pools and their composition varied widely among different species. Highest sulfation of BAs was observed in human and chimpanzee. Glycine amidation was predominant in human, minipig, hamster and rabbit, while taurine amidation was predominant in mice, rat and dogs. BA profiles consisted primarily of tri‐OH BAs in hamster, rat, dog and mice, di‐OH BAs in human, rabbit and minipig, and mono‐OH BA in chimpanzee. BA profiles comprised primarily hydrophilic and less toxic BAs in mice, rat, pig and hamster, while it primarily comprised hydrophobic and more toxic BAs in human, rabbit and chimpanzee. Therefore, the hydrophobicity index was lowest in minipig and mice, while it was highest in rabbit, monkey and human. Glucuronidation and glutathione conjugation were low in all species across all BAs. Total concentration of BAs in urine was up to 10× higher and more hydrophilic than plasma in most species. This was due to the presence of more tri‐OH, amidated, sulfated and primary BAs, in urine compared to plasma. In general, BA profiles of chimpanzee and monkeys were most similar to human, while minipig, rat and mice were most dissimilar to human. The marked differences in bile acid (BA) composition between preclinical safety models and humans may play a major role in the poor prediction of drug‐induced liver injury. We compared the composition of plasma and urinary BAs and their metabolites between humans and several animal species. BA profiles varied widely among different species and it comprised primarily hydrophilic and less toxic BAs in mice, rat, pig and hamster, while it primarily comprised hydrophobic and more toxic BAs in human, rabbit and chimpanzee. In general, BA profiles of chimpanzee and monkeys were most similar to humans, while minipig, rat and mice were most dissimilar to humans.
Maintenance of bile acid (BA) homeostasis is essential to achieve their physiologic functions and avoid their toxic effects. The marked differences in BA composition between preclinical safety models and humans may play a major role in the poor prediction of drug-induced liver injury using preclinical models. We compared the composition of plasma and urinary BAs and their metabolites between humans and several animal species. Total BA pools and their composition varied widely among different species. Highest sulfation of BAs was observed in human and chimpanzee. Glycine amidation was predominant in human, minipig, hamster and rabbit, while taurine amidation was predominant in mice, rat and dogs. BA profiles consisted primarily of tri-OH BAs in hamster, rat, dog and mice, di-OH BAs in human, rabbit and minipig, and mono-OH BA in chimpanzee. BA profiles comprised primarily hydrophilic and less toxic BAs in mice, rat, pig and hamster, while it primarily comprised hydrophobic and more toxic BAs in human, rabbit and chimpanzee. Therefore, the hydrophobicity index was lowest in minipig and mice, while it was highest in rabbit, monkey and human. Glucuronidation and glutathione conjugation were low in all species across all BAs. Total concentration of BAs in urine was up to 10× higher and more hydrophilic than plasma in most species. This was due to the presence of more tri-OH, amidated, sulfated and primary BAs, in urine compared to plasma. In general, BA profiles of chimpanzee and monkeys were most similar to human, while minipig, rat and mice were most dissimilar to human.
Abstract Maintenance of bile acid (BA) homeostasis is essential to achieve their physiologic functions and avoid their toxic effects. The marked differences in BA composition between preclinical safety models and humans may play a major role in the poor prediction of drug‐induced liver injury using preclinical models. We compared the composition of plasma and urinary BAs and their metabolites between humans and several animal species. Total BA pools and their composition varied widely among different species. Highest sulfation of BAs was observed in human and chimpanzee. Glycine amidation was predominant in human, minipig, hamster and rabbit, while taurine amidation was predominant in mice, rat and dogs. BA profiles consisted primarily of tri‐OH BAs in hamster, rat, dog and mice, di‐OH BAs in human, rabbit and minipig, and mono‐OH BA in chimpanzee. BA profiles comprised primarily hydrophilic and less toxic BAs in mice, rat, pig and hamster, while it primarily comprised hydrophobic and more toxic BAs in human, rabbit and chimpanzee. Therefore, the hydrophobicity index was lowest in minipig and mice, while it was highest in rabbit, monkey and human. Glucuronidation and glutathione conjugation were low in all species across all BAs. Total concentration of BAs in urine was up to 10× higher and more hydrophilic than plasma in most species. This was due to the presence of more tri‐OH, amidated, sulfated and primary BAs, in urine compared to plasma. In general, BA profiles of chimpanzee and monkeys were most similar to human, while minipig, rat and mice were most dissimilar to human. The marked differences in bile acid (BA) composition between preclinical safety models and humans may play a major role in the poor prediction of drug‐induced liver injury. We compared the composition of plasma and urinary BAs and their metabolites between humans and several animal species. BA profiles varied widely among different species and it comprised primarily hydrophilic and less toxic BAs in mice, rat, pig and hamster, while it primarily comprised hydrophobic and more toxic BAs in human, rabbit and chimpanzee. In general, BA profiles of chimpanzee and monkeys were most similar to humans, while minipig, rat and mice were most dissimilar to humans.
Author Alamoudi, Jawaher Abdullah
Gautam, Nagsen
Alnouti, Yazen
Rodrigues, A. David
Thakare, Rhishikesh
Author_xml – sequence: 1
  givenname: Rhishikesh
  orcidid: 0000-0002-8219-6830
  surname: Thakare
  fullname: Thakare, Rhishikesh
  organization: University of Nebraska Medical Center
– sequence: 2
  givenname: Jawaher Abdullah
  surname: Alamoudi
  fullname: Alamoudi, Jawaher Abdullah
  organization: University of Nebraska Medical Center
– sequence: 3
  givenname: Nagsen
  surname: Gautam
  fullname: Gautam, Nagsen
  organization: University of Nebraska Medical Center
– sequence: 4
  givenname: A. David
  surname: Rodrigues
  fullname: Rodrigues, A. David
  organization: Pharmacokinetics, Pharmacodynamics & Metabolism, Medicine Design, Pfizer Inc
– sequence: 5
  givenname: Yazen
  surname: Alnouti
  fullname: Alnouti, Yazen
  email: yalnouti@unmc.edu
  organization: University of Nebraska Medical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29785833$$D View this record in MEDLINE/PubMed
BookMark eNp1kE1LAzEQhoMo9kPBXyABL1625mN3kxxL8aNaULCCt5BNspDSza5JF-m_N7VVT55mYB7emXlG4Ni33gJwgdEEI0RuVmozoWWeH4EhRkJkmJT0GAwRKVGWU_Y-AKMYVwilGeGnYEAE4wWndAieXjurnY3QuLq2wXqdeudh5dYWKu1MhPMJfFmr2CiovIF9cN7-jaFum66NbuNafwZOarWO9vxQx-Dt7nY5e8gWz_fz2XSR6RwXecYLyrSpDVY8R4xhnNeoQLrIBddIWFVbShjTvEJlupjTiihhMDaCWI4FZ3QMrva5XWg_ehs3ctX2waeVkiAuOBKUFYm63lM6tDEGW8suuEaFrcRI7qzJZE3urCX08hDYV401v-CPpgRke-Az_b39N0g-TpffgV9_IXVI
CitedBy_id crossref_primary_10_1111_jpn_13969
crossref_primary_10_3390_nu12061837
crossref_primary_10_1016_j_jsbmb_2022_106100
crossref_primary_10_1016_j_isci_2023_107922
crossref_primary_10_1007_s11883_020_00863_7
crossref_primary_10_3727_105221619X15614873062730
crossref_primary_10_1111_bph_16041
crossref_primary_10_1002_imt2_128
crossref_primary_10_1084_jem_20232148
crossref_primary_10_1016_j_livres_2020_05_001
crossref_primary_10_1016_j_bbadis_2020_165958
crossref_primary_10_1038_s41579_022_00805_x
crossref_primary_10_3389_fmicb_2022_1023623
crossref_primary_10_1126_sciadv_adj0146
crossref_primary_10_1016_j_pharmthera_2023_108457
crossref_primary_10_1002_elps_202000139
crossref_primary_10_1039_D3AN00900A
crossref_primary_10_3390_metabo14040178
crossref_primary_10_3390_metabo14040211
crossref_primary_10_1039_D3AN01237A
crossref_primary_10_3389_fvets_2021_748803
crossref_primary_10_1016_j_bbalip_2021_159006
crossref_primary_10_1194_jlr_RA119000395
crossref_primary_10_1002_jssc_202300233
crossref_primary_10_1124_dmd_120_090464
crossref_primary_10_3389_fvets_2024_1380920
crossref_primary_10_3390_biomedicines11020384
crossref_primary_10_1093_toxsci_kfy271
crossref_primary_10_1248_bpbreports_3_2_60
crossref_primary_10_1089_aivt_2023_0004
crossref_primary_10_1039_D3AY00313B
crossref_primary_10_1038_s41392_024_01811_6
crossref_primary_10_3389_fcell_2021_758632
crossref_primary_10_3390_metabo11070442
crossref_primary_10_1021_jasms_0c00435
crossref_primary_10_3390_metabo12121230
crossref_primary_10_1016_j_phrs_2023_106943
crossref_primary_10_1194_jlr_D120000726
crossref_primary_10_1038_s41598_022_06692_9
crossref_primary_10_1016_j_jhepr_2023_100871
crossref_primary_10_1248_bpbreports_2_2_29
crossref_primary_10_1210_endocr_bqac155
crossref_primary_10_3390_ijms22137163
crossref_primary_10_1371_journal_pone_0298602
crossref_primary_10_1016_j_taap_2022_116008
crossref_primary_10_1124_dmd_121_000385
crossref_primary_10_3390_ijms24032489
crossref_primary_10_1111_liv_14800
crossref_primary_10_1016_j_cbi_2021_109525
crossref_primary_10_1038_s42003_024_06321_3
crossref_primary_10_1016_j_xphs_2019_03_021
crossref_primary_10_1002_rcm_9731
crossref_primary_10_1007_s00204_023_03583_4
crossref_primary_10_1007_s00281_021_00869_6
crossref_primary_10_1038_s41575_023_00771_6
crossref_primary_10_4062_biomolther_2021_059
crossref_primary_10_14814_phy2_15368
crossref_primary_10_1016_j_tox_2021_152848
crossref_primary_10_3390_metabo12070633
crossref_primary_10_3390_cells11091591
crossref_primary_10_1186_s12944_022_01654_6
crossref_primary_10_1016_j_chroma_2021_462422
crossref_primary_10_1038_s41598_024_55241_z
crossref_primary_10_1017_S0007114520001774
crossref_primary_10_1038_s41587_021_01045_9
crossref_primary_10_3390_nu13010209
crossref_primary_10_1038_s41575_024_00914_3
crossref_primary_10_1038_s41586_022_05380_y
crossref_primary_10_3390_ijms21186495
crossref_primary_10_3390_ijms21186534
crossref_primary_10_1016_j_metabol_2021_154707
crossref_primary_10_1124_dmd_120_000011
crossref_primary_10_1155_2022_5473752
crossref_primary_10_1016_j_heliyon_2023_e15757
crossref_primary_10_1152_ajpgi_00017_2023
crossref_primary_10_1016_j_livres_2022_11_005
crossref_primary_10_3390_ijms23126496
Cites_doi 10.1080/15287398209530200
10.1016/0009-8981(91)90299-R
10.1016/j.jchromb.2014.11.001
10.1136/gut.26.1.38
10.1016/S0022-2275(20)42614-8
10.1194/jlr.M007641
10.1016/j.jhep.2009.05.012
10.1124/dmd.115.065425
10.1038/sj.cdd.4400560
10.1023/A:1013699130991
10.1111/j.1365-2036.2006.03117.x
10.3748/wjg.15.1677
10.1007/BF01076210
10.1093/toxsci/kfn268
10.1002/rcm.5072
10.1074/jbc.M105117200
10.1016/S0168-8278(97)80147-X
10.1007/s10620-015-3776-8
10.1292/jvms.56.299
10.1093/toxsci/kfu228
10.1002/cphy.c120023
10.1186/1743-7075-7-73
10.1021/pr500920q
10.1016/0304-3835(93)90227-Z
10.1002/hep.20948
10.1210/jc.2013-3367
10.1016/0006-2944(79)90003-6
10.1093/toxsci/kft176
10.1016/S0022-2275(20)39455-4
10.1016/j.jpba.2005.09.013
10.1016/0306-9877(86)90137-4
10.1007/s10329-003-0074-4
10.1053/gast.2001.29608
10.1093/toxsci/kfu195
10.1152/ajpgi.00258.2011
10.2741/3399
10.1016/j.jpba.2011.03.035
10.1002/hep.21337
10.1007/978-3-642-14541-4_8
10.1016/j.clinre.2015.12.017
10.1093/toxsci/kfr177
10.1016/j.jchromb.2013.10.019
10.7326/0003-4819-137-12-200212170-00007
10.1073/pnas.98.4.2011
10.1016/j.cmet.2013.03.013
10.1016/S0022-2275(20)38175-X
10.1042/bj1780201
10.1016/j.taap.2012.02.002
10.1248/bpb.25.1381
10.1292/jvms.53.81
10.1021/ac503816u
10.1097/00005176-198601000-00005
10.1007/s40139-012-0003-6
10.1038/ijo.2016.46
10.1016/j.jpba.2016.09.023
10.1159/000460025
10.1371/journal.pone.0087548
10.1080/095530099140663
10.1016/0016-5085(86)90457-9
10.1097/TP.0b013e3181954fee
10.2131/jts.37.105
10.1194/jlr.D028803
10.1385/CT:5:1:063
10.1007/s00253-010-2998-0
10.1002/mnfr.201500686
10.1002/hep.1840040416
10.1016/j.dld.2010.03.015
10.1111/jvim.13841
10.1111/j.1365-2265.2010.03886.x
10.1016/S0304-4165(01)00096-4
10.1042/bj3560481
10.1586/17474124.2014.922871
10.1016/S0022-2275(20)32466-4
10.1081/DMR-200033475
10.1093/toxsci/kfu227
10.1053/gast.2001.24833
10.1002/hep.1840040321
10.1371/journal.pone.0131010
10.1007/BF01891965
10.1097/00005176-199601000-00014
10.1016/j.taap.2013.01.018
10.1016/S0022-2275(20)38331-0
10.1074/jbc.M105300200
10.1016/S0022-2275(20)41426-9
10.1074/jbc.M805804200
10.1016/j.dld.2011.10.025
10.1016/S0016-5085(19)32219-X
10.1016/j.chroma.2010.11.062
10.2460/javma.2003.222.1368
10.1007/s11695-016-2087-2
10.1093/chromsci/bmu167
10.1111/j.1939-1676.2003.tb02425.x
10.3164/jcbn.13-46
10.1002/hep.1840050325
10.1016/j.jchromb.2012.05.015
10.1021/mp060009t
10.1016/j.bbrc.2011.11.032
10.1194/jlr.M500427-JLR200
10.3109/00498250903514607
10.1016/0022-4731(77)90277-1
10.4254/wjh.v9.i1.30
ContentType Journal Article
Copyright Copyright © 2018 John Wiley & Sons, Ltd.
2018 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2018 John Wiley & Sons, Ltd.
– notice: 2018 John Wiley & Sons, Ltd.
DBID NPM
AAYXX
CITATION
7ST
7TK
7U7
C1K
K9.
SOI
DOI 10.1002/jat.3644
DatabaseName PubMed
CrossRef
Environment Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
ProQuest Health & Medical Complete (Alumni)
Environment Abstracts
DatabaseTitle PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
Toxicology Abstracts
Neurosciences Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Pharmacy, Therapeutics, & Pharmacology
EISSN 1099-1263
EndPage 1335
ExternalDocumentID 10_1002_jat_3644
29785833
JAT3644
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EDH
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GWYGA
H.T
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6Q
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
UB1
V8K
VH1
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWP
WXSBR
WYISQ
XG1
XPP
XV2
YCJ
YHZ
ZXP
ZZTAW
~02
~IA
~KM
~WT
NPM
AAYXX
CITATION
7ST
7TK
7U7
C1K
K9.
SOI
ID FETCH-LOGICAL-c4154-8537cdfd1a84077114f050c5498c09eafe3277c8b0600083b2a9d11d92e819873
IEDL.DBID 33P
ISSN 0260-437X
IngestDate Thu Oct 10 22:12:29 EDT 2024
Fri Aug 23 00:19:10 EDT 2024
Sat Sep 28 08:33:56 EDT 2024
Sat Aug 24 01:11:21 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Urine
Drug induced liver injury
LC-MS/MS
Plasma
Bile acids
Human, Preclinical species
Language English
License Copyright © 2018 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4154-8537cdfd1a84077114f050c5498c09eafe3277c8b0600083b2a9d11d92e819873
ORCID 0000-0002-8219-6830
PMID 29785833
PQID 2089809375
PQPubID 105373
PageCount 13
ParticipantIDs proquest_journals_2089809375
crossref_primary_10_1002_jat_3644
pubmed_primary_29785833
wiley_primary_10_1002_jat_3644_JAT3644
PublicationCentury 2000
PublicationDate October 2018
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: October 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bognor Regis
PublicationSubtitle JAT
PublicationTitle Journal of applied toxicology
PublicationTitleAlternate J Appl Toxicol
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 3
2009; 87
2013; 1
2002; 19
1988; 103
2011; 55
2016; 30
1985; 26
1989; 30
2009; 14
2006; 24
2004; 36
1971; 12
1986; 5
2015; 87
2015b; 143
2016; 40
2013; 942–943
1979; 22
2010; 7
2012; 899
2011; 123
2009; 15
2014; 99
1990; 31
1986; 91
2011; 416
2015; 53
2004; 45
2015; 976–977
2011; 74
2002; 137
2001; 1526
1986; 19
1997; 27
2012; 37
1992; 33
2010; 40
2001; 276
2010; 42
2006; 40
1984; 4
2015; 60
2015a; 143
2006; 44
2015; 64
1978; 40
2006; 47
2005; 5
1984; 9
2011; 89
2009; 108
2003; 222
1991; 203
2012; 44
2014; 142
2016; 26
2010; 51
1991; 53
1982; 11
1982; 99
2003; 17
1988; 30
2017; 9
1974; 19
2012; 53
1982; 23
2011; 201
2009; 51
2013; 17
1993; 70
2015; 43
1977; 73
1982; 9
2009; 284
2011; 25
2014; 9
2014; 8
2014; 54
1996; 22
2001; 98
2001; 121
2012; 261
2015; 14
2001; 120
1985; 5
2015; 10
2005; 42
2013; 268
2006; 3
2012; 302
1999; 6
2002; 25
1998; 39
1979; 178
1994; 56
2013; 136
1975; 69
1999; 75
2011; 1218
2016; 60
2016; 131
2001; 356
1977; 8
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_26_1
e_1_2_7_49_1
Obinata K. (e_1_2_7_64_1) 1988; 30
Hagey L. R. (e_1_2_7_36_1) 1998; 39
Cowen A. E. (e_1_2_7_23_1) 1975; 69
e_1_2_7_90_1
e_1_2_7_94_1
Armstrong M. J. (e_1_2_7_7_1) 1982; 23
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_33_1
e_1_2_7_56_1
e_1_2_7_37_1
Powell A. A. (e_1_2_7_75_1) 2001; 356
e_1_2_7_4_1
e_1_2_7_105_1
e_1_2_7_8_1
Takita M. (e_1_2_7_91_1) 1988; 103
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
Palmer R. H. (e_1_2_7_68_1) 1971; 12
Heuman D. M. (e_1_2_7_38_1) 1989; 30
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_59_1
e_1_2_7_78_1
Pattinson N. R. (e_1_2_7_71_1) 1984; 9
Palmer R. H. (e_1_2_7_69_1) 1982; 99
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_9_1
Roda A. (e_1_2_7_79_1) 1990; 31
e_1_2_7_102_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_107_1
Hofmann A. F. (e_1_2_7_42_1) 1992; 33
e_1_2_7_80_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_27_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
Mohankumar N. (e_1_2_7_61_1) 2015; 64
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
References_xml – volume: 284
  start-page: 3354
  year: 2009
  end-page: 3364
  article-title: Characterization of enantiomeric bile acid‐induced apoptosis in colon cancer cell lines
  publication-title: Journal of Biological Chemistry
– volume: 98
  start-page: 2011
  issue: 4
  year: 2001
  end-page: 2016
  article-title: Targeted inactivation of sister of P‐glycoprotein gene (spgp) in mice results in nonprogressive but persistent intrahepatic cholestasis
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 12
  start-page: 680
  year: 1971
  end-page: 687
  article-title: Bile acid sulfates. II. Formation, metabolism, and excretion of lithocholic acid sulfates in the rat
  publication-title: Journal of Lipid Research
– volume: 10
  year: 2015
  article-title: Comparison of bile acids and acetaminophen protein adducts in children and adolescents with acetaminophen toxicity
  publication-title: PLoS One
– volume: 22
  start-page: 165
  year: 1979
  end-page: 174
  article-title: The effect of bile duct ligation on hepatic bile acid sulfotransferase activity in the hamster
  publication-title: Biochemical Medicine
– volume: 5
  start-page: 23
  year: 1986
  end-page: 29
  article-title: Sulfated and nonsulfated bile acids in urine of patients with biliary atresia: analysis of bile acids by high‐performance liquid chromatography
  publication-title: Journal of Pediatric Gastroenterology and Nutrition
– volume: 51
  start-page: 565
  year: 2009
  end-page: 580
  article-title: New molecular insights into the mechanisms of cholestasis
  publication-title: Journal of Hepatology
– volume: 131
  start-page: 473
  year: 2016
  end-page: 481
  article-title: Bile acid profiles in diabetic (db/db) mice and their wild type littermates
  publication-title: Journal of Pharmaceutical and Biomedical Analysis
– volume: 69
  start-page: 59
  year: 1975
  end-page: 66
  article-title: Metabolism of lethocholate in healthy man. I. Biotransformation and biliary excretion of intravenously administered lithocholate, lithocholylglycine, and their sulfates
  publication-title: Gastroenterology
– volume: 99
  start-page: 533
  year: 1982
  end-page: 538
  article-title: Lithocholate metabolism in baboons fed chenodeoxycholate
  publication-title: Journal of Laboratory and Clinical Medicine
– volume: 11
  start-page: 59
  year: 1982
  end-page: 64
  article-title: Lithocholate sulphation in the baboon
  publication-title: Journal of Medical Primatology
– volume: 8
  start-page: 1077
  year: 1977
  end-page: 1084
  article-title: The bile acid composition of rabbit and cat gall‐bladder bile
  publication-title: Journal of Steroid Biochemistry
– volume: 108
  start-page: 225
  year: 2009
  end-page: 246
  article-title: Bile acid sulfation: a pathway of bile acid elimination and detoxification
  publication-title: Toxicological Sciences
– volume: 276
  start-page: 41690
  year: 2001
  end-page: 41699
  article-title: Transcriptional regulation of the human sterol 12alpha‐hydroxylase gene (CYP8B1): roles of hepatocyte nuclear factor 4alpha in mediating bile acid repression
  publication-title: Journal of Biological Chemistry
– volume: 103
  start-page: 778
  year: 1988
  end-page: 786
  article-title: Effect of bile duct ligation on bile acid and cholesterol metabolism in rats
  publication-title: Journal of Biological Chemistry
– volume: 23
  start-page: 70
  year: 1982
  end-page: 80
  article-title: The hydrophobic‐hydrophilic balance of bile salts. Inverse correlation between reverse‐phase high performance liquid chromatographic mobilities and micellar cholesterol‐solubilizing capacities
  publication-title: Journal of Lipid Research
– volume: 137
  start-page: 947
  year: 2002
  end-page: … 954
  article-title: Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States
  publication-title: Annals of Internal Medicine
– volume: 14
  start-page: 850
  year: 2015
  end-page: 859
  article-title: Profiling of serum bile acids in a healthy Chinese population using UPLC‐MS/MS
  publication-title: Journal of Proteome Research
– volume: 89
  start-page: 903
  year: 2011
  end-page: 915
  article-title: Bacterial degradation of bile salts
  publication-title: Applied Microbiology and Biotechnology
– volume: 53
  start-page: 2231
  year: 2012
  end-page: 2241
  article-title: Targeted profiling of circulating and hepatic bile acids in human, mouse, and rat using a UPLC‐MRM‐MS‐validated method
  publication-title: Journal of Lipid Research
– volume: 27
  start-page: 1029
  year: 1997
  end-page: 1040
  article-title: Effects of ursodeoxycholic acid on conjugated bile acids and progesterone metabolites in serum and urine of patients with intrahepatic cholestasis of pregnancy
  publication-title: Journal of Hepatology
– volume: 120
  start-page: 1801
  year: 2001
  end-page: 1809
  article-title: Expression of sterol 12alpha‐hydroxylase alters bile acid pool composition in primary rat hepatocytes and in vivo
  publication-title: Gastroenterology
– volume: 37
  start-page: 105
  year: 2012
  end-page: 121
  article-title: Cattle bile but not bear bile or pig bile induces lipid profile changes and fatty liver injury in mice: mediation by cholic acid
  publication-title: Journal of Toxicological Sciences
– volume: 40
  start-page: 109
  year: 1978
  end-page: 118
  article-title: Bile acid conjugation in the chimpanzee: effective sulfation of lithocholic acid
  publication-title: Archives of Toxicology
– volume: 30
  start-page: 477
  year: 2016
  end-page: 490
  article-title: 2015 ACVIM Small Animal Consensus Statement on Seizure Management in Dogs
  publication-title: Journal of Veterinary Internal Medicine
– volume: 47
  start-page: 582
  year: 2006
  end-page: 592
  article-title: Fxr(−/−) mice adapt to biliary obstruction by enhanced phase I detoxification and renal elimination of bile acids
  publication-title: Journal of Lipid Research
– volume: 30
  start-page: 719
  year: 1989
  end-page: 730
  article-title: Quantitative estimation of the hydrophilic‐hydrophobic balance of mixed bile salt solutions
  publication-title: Journal of Lipid Research
– volume: 9
  start-page: 30
  year: 2017
  end-page: 37
  article-title: Drug‐induced liver injury: Towards early prediction and risk stratification
  publication-title: World Journal of Hepatology
– volume: 9
  year: 2014
  article-title: Evaluation of the endothelin receptor antagonists ambrisentan, bosentan, macitentan, and sitaxsentan as hepatobiliary transporter inhibitors and substrates in sandwich‐cultured human hepatocytes
  publication-title: PLoS One
– volume: 19
  start-page: 877
  year: 1974
  end-page: 886
  article-title: Effect of dietary chenodeoxycholic acid and lithocholic acid in the rabbit
  publication-title: The American Journal of Digestive Diseases
– volume: 45
  start-page: 141
  year: 2004
  end-page: 145
  article-title: On the possible adaptive value of coprophagy in free‐ranging chimpanzees
  publication-title: Primates
– volume: 121
  start-page: 1473
  year: 2001
  end-page: 1484
  article-title: Adaptive regulation of bile salt transporters in kidney and liver in obstructive cholestasis in the rat
  publication-title: Gastroenterology
– volume: 143
  start-page: 296
  year: 2015a
  end-page: 307
  article-title: Urinary bile acids as biomarkers for liver diseases I. Stability of the baseline profile in healthy subjects
  publication-title: Toxicological Sciences
– volume: 276
  start-page: 38610
  year: 2001
  end-page: 38618
  article-title: The bile acid glycochenodeoxycholate induces trail‐receptor 2/DR5 expression and apoptosis
  publication-title: Journal of Biological Chemistry
– volume: 30
  start-page: 299
  year: 1988
  end-page: 303
  article-title: Sulfated and nonsulfated urinary bile acids in cholestasis in children
  publication-title: Acta Paediatrica Japonica
– volume: 44
  start-page: 746
  year: 2006
  end-page: 764
  article-title: Primary sclerosing cholangitis: summary of a workshop
  publication-title: Hepatology
– volume: 26
  start-page: 2384
  year: 2016
  end-page: 2392
  article-title: Effects of bariatric surgery on serum bile acid composition and conjugation in a diabetic rat model
  publication-title: Obesity Surgery
– volume: 25
  start-page: 1381
  year: 2002
  end-page: 1384
  article-title: Biliary, fecal and plasma deoxycholic acid in rabbit, hamster, guinea pig, and rat: comparative study and implication in colon cancer
  publication-title: Biological and Pharmaceutical Bulletin
– volume: 1
  start-page: 29
  year: 2013
  end-page: 35
  article-title: Bile acid receptors and liver cancer
  publication-title: Current Pathobiology Reports
– volume: 203
  start-page: 269
  year: 1991
  end-page: 273
  article-title: Deoxycholic acid is not reconverted to cholic acid in humans – a study by isotope ratio mass spectrometry
  publication-title: Clinica Chimica Acta
– volume: 6
  start-page: 842
  year: 1999
  end-page: 854
  article-title: Ursodeoxycholic acid prevents cytochrome c release in apoptosis by inhibiting mitochondrial membrane depolarization and channel formation
  publication-title: Cell Death & Differentiation
– volume: 143
  start-page: 308
  year: 2015b
  end-page: 318
  article-title: Urinary bile acids as biomarkers for liver diseases II. Signature profiles in patients
  publication-title: Toxicological Sciences
– volume: 40
  start-page: 1179
  year: 2006
  end-page: 1186
  article-title: High sensitive analysis of rat serum bile acids by liquid chromatography/electrospray ionization tandem mass spectrometry
  publication-title: Journal of Pharmaceutical and Biomedical Analysis
– volume: 7
  start-page: 73
  year: 2010
  publication-title: Nutrition & Metabolism (London)
– volume: 123
  start-page: 359
  year: 2011
  end-page: 367
  article-title: Dose‐response of five bile acids on serum and liver bile Acid concentrations and hepatotoxicty in mice
  publication-title: Toxicological Sciences
– volume: 43
  start-page: 1760
  year: 2015
  end-page: 1768
  article-title: Prediction of the clinical risk of drug‐induced cholestatic liver injury using an in vitro sandwich cultured hepatocyte assay
  publication-title: Drug Metabolism & Disposition
– volume: 87
  start-page: 1127
  year: 2015
  end-page: 1136
  article-title: Metabolic profiling of bile acids in human and mouse blood by LC‐MS/MS in combination with phospholipid‐depletion solid‐phase extraction
  publication-title: Analytical Chemistry
– volume: 4
  start-page: 477
  year: 1984
  end-page: 485
  article-title: Hepatic transport of sulfated and nonsulfated bile acids in the rat following relief of bile duct obstruction
  publication-title: Hepatology
– volume: 222
  start-page: 1368
  year: 2003
  end-page: 1375
  article-title: Evaluation of urine sulfated and nonsulfated bile acids as a diagnostic test for liver disease in dogs
  publication-title: Journal of the American Veterinary Medical Association
– volume: 31
  start-page: 1433
  issue: 8
  year: 1990
  end-page: 1443
  article-title: Bile acid structure‐activity relationship: evaluation of bile acid lipophilicity using 1‐octanol/water partition coefficient and reverse phase HPLC
  publication-title: Journal of Lipid Research
– volume: 17
  start-page: 657
  year: 2013
  end-page: 669
  article-title: Pleiotropic roles of bile acids in metabolism
  publication-title: Cell Metabolism
– volume: 14
  start-page: 2584
  year: 2009
  end-page: 2598
  article-title: The enterohepatic circulation of bile acids in mammals: form and functions
  publication-title: Frontiers in Bioscience (Landmark Ed)
– volume: 17
  start-page: 145
  year: 2003
  end-page: 153
  article-title: Urine sulfated and nonsulfated bile acids as a diagnostic test for liver disease in cats
  publication-title: Journal of Veterinary Internal Medicine
– volume: 19
  start-page: 57
  year: 1986
  end-page: 69
  article-title: Bile acid‐induced liver toxicity: relation to the hydrophobic‐hydrophilic balance of bile acids
  publication-title: Medical Hypotheses
– volume: 91
  start-page: 189
  year: 1986
  end-page: 197
  article-title: Differing effects of nor‐ursodeoxycholic or ursodeoxycholic acid on hepatic histology and bile acid metabolism in the rabbit
  publication-title: Gastroenterology
– volume: 9
  start-page: 727
  year: 1982
  end-page: 741
  article-title: National Cooperative Gallstone Study: nonprimate toxicology of chenodeoxycholic acid
  publication-title: Journal of Toxicology and Environmental Health
– volume: 73
  start-page: 314
  year: 1977
  end-page: 320
  article-title: Increased sulfation and decreased 7alpha‐hydroxylation of deoxycholic acid in ethinyl estradiol‐induced cholestasis in rats
  publication-title: Gastroenterology
– volume: 44
  start-page: 303
  year: 2012
  end-page: 310
  article-title: Metabolomic profiling of 17 bile acids in serum from patients with primary biliary cirrhosis and primary sclerosing cholangitis: a pilot study
  publication-title: Digestive and Liver Disease
– volume: 899
  start-page: 135
  year: 2012
  end-page: 145
  article-title: Bile acid profiling in human biological samples: comparison of extraction procedures and application to normal and cholestatic patients
  publication-title: Journal of Chromatography B Analytical Technologies in the Biomedical and Life Sciences
– volume: 416
  start-page: 313
  issue: 3‐4
  year: 2011
  end-page: 317
  article-title: Bile salt export pump inhibitors are associated with bile acid‐dependent drug‐induced toxicity in sandwich‐cultured hepatocytes
  publication-title: Biochemical and Biophysical Research Communications
– volume: 142
  start-page: 436
  year: 2014
  end-page: 444
  article-title: Glycodeoxycholic acid levels as prognostic biomarker in acetaminophen‐induced acute liver failure patients
  publication-title: Toxicological Sciences
– volume: 4
  start-page: 661
  year: 1984
  end-page: 666
  article-title: Influence of hydroxylation and conjugation of bile salts on their membrane‐damaging properties – studies on isolated hepatocytes and lipid membrane vesicles
  publication-title: Hepatology
– volume: 201
  start-page: 299
  year: 2011
  end-page: 323
  article-title: Multidrug resistance proteins (MRPs, ABCCs): importance for pathophysiology and drug therapy
  publication-title: Handbook of Experimental Pharmacology
– volume: 75
  start-page: 209
  year: 1999
  end-page: 216
  article-title: Modified bile acid profiles in mixed neutron and gamma‐irradiated pigs
  publication-title: International Journal of Radiation Biology
– volume: 1526
  start-page: 44
  year: 2001
  end-page: 52
  article-title: Metabolism and effects on cholestasis of isoursodeoxycholic and ursodeoxycholic acids in bile duct ligated rats
  publication-title: Biochimica et Biophysica Acta
– volume: 56
  start-page: 299
  year: 1994
  end-page: 303
  article-title: Changes in bile acid composition of serum and gallbladder bile in bile duct ligated dogs
  publication-title: Journal of Veterinary Medical Science
– volume: 60
  start-page: 642
  year: 2016
  end-page: 651
  article-title: Circulating triglycerides and bile acids are reduced by a soluble wheat arabinoxylan via modulation of bile concentration and lipid digestion rates in a pig model
  publication-title: Molecular Nutrition & Food Research
– volume: 15
  start-page: 1677
  year: 2009
  end-page: 1689
  article-title: Bile‐acid‐induced cell injury and protection
  publication-title: World Journal of Gastroenterology
– volume: 99
  start-page: 1442
  year: 2014
  end-page: 1451
  article-title: Fasting serum taurine‐conjugated bile acids are elevated in type 2 diabetes and do not change with intensification of insulin
  publication-title: Journal of Clinical Endocrinology and Metabolism
– volume: 53
  start-page: 81
  year: 1991
  end-page: 86
  article-title: Serum bile acid composition of the dog, cow, horse and human
  publication-title: Journal of Veterinary Medical Science
– volume: 302
  start-page: G1035
  year: 2012
  end-page: G1042
  article-title: Ursodeoxycholate modulates bile flow and bile salt pool independently from the cystic fibrosis transmembrane regulator (Cftr) in mice
  publication-title: American Journal of Physiology‐Gastrointestinal and Liver Physiology
– volume: 356
  start-page: 481
  year: 2001
  end-page: 486
  article-title: Bile acid hydrophobicity is correlated with induction of apoptosis and/or growth arrest in HCT116 cells
  publication-title: Biochemical Journal
– volume: 136
  start-page: 216
  year: 2013
  end-page: 241
  article-title: A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development
  publication-title: Toxicological Sciences
– volume: 24
  start-page: 1187
  year: 2006
  end-page: 1195
  article-title: Drug‐induced liver injury in a Swedish University hospital out‐patient hepatology clinic
  publication-title: Alimentary Pharmacology & Therapeutics
– volume: 40
  start-page: 257
  year: 2016
  end-page: 266
  article-title: Bile acids in drug induced liver injury: Key players and surrogate markers
  publication-title: Clinics and Research in Hepatology and Gastroenterology
– volume: 5
  start-page: 492
  year: 1985
  end-page: 495
  article-title: Biliary and urinary excretion of sulfated, glucuronidated and tetrahydroxylated bile acids in cirrhotic patients
  publication-title: Hepatology
– volume: 33
  start-page: 617
  year: 1992
  end-page: 626
  article-title: Bile acid solubility and precipitation in vitro and in vivo: the role of conjugation, pH, and Ca ions
  publication-title: Journal of Lipid Research
– volume: 9
  start-page: 137
  year: 1984
  end-page: 142
  article-title: Lithocholate detoxification and biliary secretion in the rat
  publication-title: Biochemistry International
– volume: 39
  start-page: 2119
  year: 1998
  end-page: 2124
  article-title: An N‐acyl glycyltaurine conjugate of deoxycholic acid in the biliary bile acids of the rabbit
  publication-title: Journal of Lipid Research
– volume: 53
  start-page: 1060
  year: 2015
  end-page: 1065
  article-title: Rapid determination of bile acids in bile from various mammals by reversed‐phase ultra‐fast liquid chromatography
  publication-title: Journal of Chromatographic Science
– volume: 268
  start-page: 79
  year: 2013
  end-page: 89
  article-title: Perturbation of bile acid homeostasis is an early pathogenesis event of drug induced liver injury in rats
  publication-title: Toxicology and Applied Pharmacology
– volume: 19
  start-page: 34
  year: 2002
  end-page: 41
  article-title: Transport activity of human MRP3 expressed in Sf9 cells: comparative studies with rat MRP3
  publication-title: Pharmaceutical Research
– volume: 976–977
  start-page: 6
  year: 2015
  end-page: 18
  article-title: A quantitiative LC‐MS/MS method for the measurement of arachidonic acid, prostanoids, endocannabinoids, N‐acylethanolamines and steroids in human plasma
  publication-title: Journal of Chromatography B Analytical Technologies in the Biomedical and Life Sciences
– volume: 87
  start-page: 330
  year: 2009
  end-page: 339
  article-title: Endogenous bile salts are associated with bile duct injury in the rat liver transplantation model
  publication-title: Transplantation
– volume: 36
  start-page: 703
  year: 2004
  end-page: 722
  article-title: Detoxification of lithocholic acid, a toxic bile acid: relevance to drug hepatotoxicity
  publication-title: Drug Metabolism Reviews
– volume: 70
  start-page: 167
  year: 1993
  end-page: 173
  article-title: Toxicity of bile acids to colon cancer cell lines
  publication-title: Cancer Letters
– volume: 942–943
  start-page: 53
  year: 2013
  end-page: 62
  article-title: The profile of bile acids and their sulfate metabolites in human urine and serum
  publication-title: Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences
– volume: 54
  start-page: 129
  year: 2014
  end-page: 135
  article-title: The involvement of endoplasmic reticulum stress in bile acid‐induced hepatocellular injury
  publication-title: Journal of Clinical Biochemistry and Nutrition
– volume: 55
  start-page: 1111
  year: 2011
  end-page: 1119
  article-title: Simultaneous characterization of bile acids and their sulfate metabolites in mouse liver, plasma, bile, and urine using LC‐MS/MS
  publication-title: Journal of Pharmaceutical and Biomedical Analysis
– volume: 64
  start-page: 634
  year: 2015
  end-page: 644
  article-title: Drug‐induced liver injury: Diagnosing (and treating) it early
  publication-title: Journal of Family Practice
– volume: 22
  start-page: 85
  year: 1996
  end-page: 91
  article-title: Biliary lipid composition and bile acid profiles during and after enteral fast of total parenteral nutrition in the rabbit
  publication-title: Journal of Pediatric Gastroenterology and Nutrition
– volume: 40
  start-page: 1260
  year: 2016
  end-page: 1267
  article-title: Influence of Roux‐en‐Y gastric bypass on plasma bile acid profiles: a comparative study between rats, pigs and humans
  publication-title: International Journal of Obesity (London)
– volume: 1218
  start-page: 524
  year: 2011
  end-page: 533
  article-title: Determination of bile acids in pig liver, pig kidney and bovine liver by gas chromatography‐chemical ionization tandem mass spectrometry with total ion chromatograms and extraction ion chromatograms
  publication-title: Journal of Chromatography A
– volume: 40
  start-page: 184
  year: 2010
  end-page: 194
  article-title: Kinetic analysis of bile acid sulfation by stably expressed human sulfotransferase 2A1 (SULT2A1)
  publication-title: Xenobiotica
– volume: 42
  start-page: 409
  year: 2010
  end-page: 418
  article-title: Bile salts and cholestasis
  publication-title: Digestive and Liver Disease
– volume: 178
  start-page: 201
  year: 1979
  end-page: 208
  article-title: Membranes and bile formation. Composition of several mammalian biles and their membrane‐damaging properties
  publication-title: Biochemical Journal
– volume: 60
  start-page: 3318
  year: 2015
  end-page: 3328
  article-title: Altered bile acid metabolome in patients with nonalcoholic steatohepatitis
  publication-title: Digestive Diseases and Sciences
– volume: 26
  start-page: 38
  year: 1985
  end-page: 42
  article-title: Profiles of bile acids and their glucuronide and sulphate conjugates in the serum, urine and bile from patients undergoing bile drainage
  publication-title: Gut
– volume: 25
  start-page: 1847
  year: 2011
  end-page: 1852
  article-title: Metabolomic investigation of cholestasis in a rat model using ultra‐performance liquid chromatography/tandem mass spectrometry
  publication-title: Rapid Communications in Mass Spectrometry
– volume: 8
  start-page: 721
  year: 2014
  end-page: 723
  article-title: Predicting idiosyncratic drug‐induced liver injury: some recent advances
  publication-title: Expert Review of Gastroenterology & Hepatology
– volume: 3
  start-page: 756
  year: 2006
  end-page: 761
  article-title: Increased serum concentrations of secondary bile salts during cholate feeding are due to coprophagy. A study with wild‐type and Atp8b1‐deficient mice
  publication-title: Molecular Pharmacology
– volume: 261
  issue: 1
  year: 2012
  end-page: 9
  article-title: Endogenous bile acid disposition in rat and human sandwich‐cultured hepatocytes
  publication-title: Toxicology and Applied Pharmacology
– volume: 51
  start-page: 3230
  year: 2010
  end-page: 3242
  article-title: Effects of feeding bile acids and a bile acid sequestrant on hepatic bile acid composition in mice
  publication-title: Journal of Lipid Research
– volume: 42
  start-page: 1364
  year: 2005
  end-page: 1372
  article-title: Acetaminophen‐induced acute liver failure: results of a United States multicenter, prospective study
  publication-title: Hepatology
– volume: 74
  start-page: 67
  issue: 1
  year: 2011
  end-page: 72
  article-title: The relationship between postprandial bile acid concentration, GLP‐1, PYY and ghrelin
  publication-title: Clinical Endocrinology (Oxf)
– volume: 5
  start-page: 63
  year: 2005
  end-page: 73
  article-title: Bile acids are toxic for isolated cardiac mitochondria: a possible cause for hepatic‐derived cardiomyopathies?
  publication-title: Cardiovascular Toxicology
– volume: 3
  start-page: 1191
  year: 2013
  end-page: 1212
  article-title: Bile acid metabolism and signaling
  publication-title: Comprehensive Physiology
– ident: e_1_2_7_66_1
  doi: 10.1080/15287398209530200
– ident: e_1_2_7_31_1
  doi: 10.1016/0009-8981(91)90299-R
– ident: e_1_2_7_32_1
  doi: 10.1016/j.jchromb.2014.11.001
– ident: e_1_2_7_90_1
  doi: 10.1136/gut.26.1.38
– volume: 31
  start-page: 1433
  issue: 8
  year: 1990
  ident: e_1_2_7_79_1
  article-title: Bile acid structure‐activity relationship: evaluation of bile acid lipophilicity using 1‐octanol/water partition coefficient and reverse phase HPLC
  publication-title: Journal of Lipid Research
  doi: 10.1016/S0022-2275(20)42614-8
  contributor:
    fullname: Roda A.
– ident: e_1_2_7_108_1
  doi: 10.1194/jlr.M007641
– ident: e_1_2_7_96_1
  doi: 10.1016/j.jhep.2009.05.012
– ident: e_1_2_7_89_1
  doi: 10.1124/dmd.115.065425
– ident: e_1_2_7_80_1
  doi: 10.1038/sj.cdd.4400560
– ident: e_1_2_7_3_1
  doi: 10.1023/A:1013699130991
– ident: e_1_2_7_26_1
  doi: 10.1111/j.1365-2036.2006.03117.x
– volume: 9
  start-page: 137
  year: 1984
  ident: e_1_2_7_71_1
  article-title: Lithocholate detoxification and biliary secretion in the rat
  publication-title: Biochemistry International
  contributor:
    fullname: Pattinson N. R.
– ident: e_1_2_7_72_1
  doi: 10.3748/wjg.15.1677
– ident: e_1_2_7_30_1
  doi: 10.1007/BF01076210
– ident: e_1_2_7_4_1
  doi: 10.1093/toxsci/kfn268
– ident: e_1_2_7_6_1
  doi: 10.1002/rcm.5072
– ident: e_1_2_7_107_1
  doi: 10.1074/jbc.M105117200
– ident: e_1_2_7_60_1
  doi: 10.1016/S0168-8278(97)80147-X
– ident: e_1_2_7_29_1
  doi: 10.1007/s10620-015-3776-8
– ident: e_1_2_7_99_1
  doi: 10.1292/jvms.56.299
– ident: e_1_2_7_13_1
  doi: 10.1093/toxsci/kfu228
– ident: e_1_2_7_19_1
  doi: 10.1002/cphy.c120023
– ident: e_1_2_7_15_1
  doi: 10.1186/1743-7075-7-73
– ident: e_1_2_7_105_1
  doi: 10.1021/pr500920q
– ident: e_1_2_7_54_1
  doi: 10.1016/0304-3835(93)90227-Z
– ident: e_1_2_7_52_1
  doi: 10.1002/hep.20948
– volume: 103
  start-page: 778
  year: 1988
  ident: e_1_2_7_91_1
  article-title: Effect of bile duct ligation on bile acid and cholesterol metabolism in rats
  publication-title: Journal of Biological Chemistry
  contributor:
    fullname: Takita M.
– ident: e_1_2_7_102_1
  doi: 10.1210/jc.2013-3367
– ident: e_1_2_7_10_1
  doi: 10.1016/0006-2944(79)90003-6
– ident: e_1_2_7_62_1
  doi: 10.1093/toxsci/kft176
– volume: 12
  start-page: 680
  year: 1971
  ident: e_1_2_7_68_1
  article-title: Bile acid sulfates. II. Formation, metabolism, and excretion of lithocholic acid sulfates in the rat
  publication-title: Journal of Lipid Research
  doi: 10.1016/S0022-2275(20)39455-4
  contributor:
    fullname: Palmer R. H.
– ident: e_1_2_7_5_1
  doi: 10.1016/j.jpba.2005.09.013
– ident: e_1_2_7_8_1
  doi: 10.1016/0306-9877(86)90137-4
– ident: e_1_2_7_51_1
  doi: 10.1007/s10329-003-0074-4
– ident: e_1_2_7_55_1
  doi: 10.1053/gast.2001.29608
– volume: 69
  start-page: 59
  year: 1975
  ident: e_1_2_7_23_1
  article-title: Metabolism of lethocholate in healthy man. I. Biotransformation and biliary excretion of intravenously administered lithocholate, lithocholylglycine, and their sulfates
  publication-title: Gastroenterology
  contributor:
    fullname: Cowen A. E.
– ident: e_1_2_7_103_1
  doi: 10.1093/toxsci/kfu195
– ident: e_1_2_7_14_1
  doi: 10.1152/ajpgi.00258.2011
– ident: e_1_2_7_41_1
  doi: 10.2741/3399
– ident: e_1_2_7_43_1
  doi: 10.1016/j.jpba.2011.03.035
– ident: e_1_2_7_53_1
  doi: 10.1002/hep.21337
– ident: e_1_2_7_50_1
  doi: 10.1007/978-3-642-14541-4_8
– ident: e_1_2_7_82_1
  doi: 10.1016/j.clinre.2015.12.017
– ident: e_1_2_7_86_1
  doi: 10.1093/toxsci/kfr177
– ident: e_1_2_7_11_1
  doi: 10.1016/j.jchromb.2013.10.019
– ident: e_1_2_7_67_1
  doi: 10.7326/0003-4819-137-12-200212170-00007
– ident: e_1_2_7_97_1
  doi: 10.1073/pnas.98.4.2011
– ident: e_1_2_7_25_1
  doi: 10.1016/j.cmet.2013.03.013
– volume: 23
  start-page: 70
  year: 1982
  ident: e_1_2_7_7_1
  article-title: The hydrophobic‐hydrophilic balance of bile salts. Inverse correlation between reverse‐phase high performance liquid chromatographic mobilities and micellar cholesterol‐solubilizing capacities
  publication-title: Journal of Lipid Research
  doi: 10.1016/S0022-2275(20)38175-X
  contributor:
    fullname: Armstrong M. J.
– ident: e_1_2_7_22_1
  doi: 10.1042/bj1780201
– ident: e_1_2_7_58_1
  doi: 10.1016/j.taap.2012.02.002
– ident: e_1_2_7_48_1
  doi: 10.1248/bpb.25.1381
– ident: e_1_2_7_100_1
  doi: 10.1292/jvms.53.81
– ident: e_1_2_7_37_1
  doi: 10.1021/ac503816u
– ident: e_1_2_7_63_1
  doi: 10.1097/00005176-198601000-00005
– ident: e_1_2_7_98_1
  doi: 10.1007/s40139-012-0003-6
– ident: e_1_2_7_87_1
  doi: 10.1038/ijo.2016.46
– ident: e_1_2_7_16_1
  doi: 10.1016/j.jpba.2016.09.023
– ident: e_1_2_7_27_1
  doi: 10.1159/000460025
– ident: e_1_2_7_56_1
  doi: 10.1371/journal.pone.0087548
– ident: e_1_2_7_81_1
  doi: 10.1080/095530099140663
– ident: e_1_2_7_21_1
  doi: 10.1016/0016-5085(86)90457-9
– ident: e_1_2_7_17_1
  doi: 10.1097/TP.0b013e3181954fee
– ident: e_1_2_7_101_1
  doi: 10.2131/jts.37.105
– ident: e_1_2_7_33_1
  doi: 10.1194/jlr.D028803
– ident: e_1_2_7_28_1
  doi: 10.1385/CT:5:1:063
– ident: e_1_2_7_73_1
  doi: 10.1007/s00253-010-2998-0
– ident: e_1_2_7_35_1
  doi: 10.1002/mnfr.201500686
– ident: e_1_2_7_83_1
  doi: 10.1002/hep.1840040416
– volume: 64
  start-page: 634
  year: 2015
  ident: e_1_2_7_61_1
  article-title: Drug‐induced liver injury: Diagnosing (and treating) it early
  publication-title: Journal of Family Practice
  contributor:
    fullname: Mohankumar N.
– ident: e_1_2_7_57_1
  doi: 10.1016/j.dld.2010.03.015
– ident: e_1_2_7_74_1
  doi: 10.1111/jvim.13841
– ident: e_1_2_7_78_1
  doi: 10.1111/j.1365-2265.2010.03886.x
– ident: e_1_2_7_76_1
  doi: 10.1016/S0304-4165(01)00096-4
– volume: 356
  start-page: 481
  year: 2001
  ident: e_1_2_7_75_1
  article-title: Bile acid hydrophobicity is correlated with induction of apoptosis and/or growth arrest in HCT116 cells
  publication-title: Biochemical Journal
  doi: 10.1042/bj3560481
  contributor:
    fullname: Powell A. A.
– ident: e_1_2_7_18_1
  doi: 10.1586/17474124.2014.922871
– volume: 39
  start-page: 2119
  year: 1998
  ident: e_1_2_7_36_1
  article-title: An N‐acyl glycyltaurine conjugate of deoxycholic acid in the biliary bile acids of the rabbit
  publication-title: Journal of Lipid Research
  doi: 10.1016/S0022-2275(20)32466-4
  contributor:
    fullname: Hagey L. R.
– ident: e_1_2_7_40_1
  doi: 10.1081/DMR-200033475
– ident: e_1_2_7_12_1
  doi: 10.1093/toxsci/kfu227
– ident: e_1_2_7_70_1
  doi: 10.1053/gast.2001.24833
– volume: 30
  start-page: 299
  year: 1988
  ident: e_1_2_7_64_1
  article-title: Sulfated and nonsulfated urinary bile acids in cholestasis in children
  publication-title: Acta Paediatrica Japonica
  contributor:
    fullname: Obinata K.
– ident: e_1_2_7_20_1
  doi: 10.1002/hep.1840040321
– ident: e_1_2_7_46_1
  doi: 10.1371/journal.pone.0131010
– ident: e_1_2_7_84_1
  doi: 10.1007/BF01891965
– ident: e_1_2_7_24_1
  doi: 10.1097/00005176-199601000-00014
– ident: e_1_2_7_106_1
  doi: 10.1016/j.taap.2013.01.018
– volume: 30
  start-page: 719
  year: 1989
  ident: e_1_2_7_38_1
  article-title: Quantitative estimation of the hydrophilic‐hydrophobic balance of mixed bile salt solutions
  publication-title: Journal of Lipid Research
  doi: 10.1016/S0022-2275(20)38331-0
  contributor:
    fullname: Heuman D. M.
– ident: e_1_2_7_39_1
  doi: 10.1074/jbc.M105300200
– volume: 33
  start-page: 617
  year: 1992
  ident: e_1_2_7_42_1
  article-title: Bile acid solubility and precipitation in vitro and in vivo: the role of conjugation, pH, and Ca2+ ions
  publication-title: Journal of Lipid Research
  doi: 10.1016/S0022-2275(20)41426-9
  contributor:
    fullname: Hofmann A. F.
– volume: 99
  start-page: 533
  year: 1982
  ident: e_1_2_7_69_1
  article-title: Lithocholate metabolism in baboons fed chenodeoxycholate
  publication-title: Journal of Laboratory and Clinical Medicine
  contributor:
    fullname: Palmer R. H.
– ident: e_1_2_7_49_1
  doi: 10.1074/jbc.M805804200
– ident: e_1_2_7_94_1
  doi: 10.1016/j.dld.2011.10.025
– ident: e_1_2_7_47_1
  doi: 10.1016/S0016-5085(19)32219-X
– ident: e_1_2_7_95_1
  doi: 10.1016/j.chroma.2010.11.062
– ident: e_1_2_7_9_1
  doi: 10.2460/javma.2003.222.1368
– ident: e_1_2_7_104_1
  doi: 10.1007/s11695-016-2087-2
– ident: e_1_2_7_85_1
  doi: 10.1093/chromsci/bmu167
– ident: e_1_2_7_93_1
  doi: 10.1111/j.1939-1676.2003.tb02425.x
– ident: e_1_2_7_2_1
  doi: 10.3164/jcbn.13-46
– ident: e_1_2_7_88_1
  doi: 10.1002/hep.1840050325
– ident: e_1_2_7_45_1
  doi: 10.1016/j.jchromb.2012.05.015
– ident: e_1_2_7_34_1
  doi: 10.1021/mp060009t
– ident: e_1_2_7_65_1
  doi: 10.1016/j.bbrc.2011.11.032
– ident: e_1_2_7_59_1
  doi: 10.1194/jlr.M500427-JLR200
– ident: e_1_2_7_44_1
  doi: 10.3109/00498250903514607
– ident: e_1_2_7_92_1
  doi: 10.1016/0022-4731(77)90277-1
– ident: e_1_2_7_77_1
  doi: 10.4254/wjh.v9.i1.30
SSID ssj0009928
Score 2.5357342
Snippet Maintenance of bile acid (BA) homeostasis is essential to achieve their physiologic functions and avoid their toxic effects. The marked differences in BA...
Abstract Maintenance of bile acid (BA) homeostasis is essential to achieve their physiologic functions and avoid their toxic effects. The marked differences in...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 1323
SubjectTerms Acids
Animal models
Bile
Bile acids
Composition
Conjugation
Drug induced liver injury
Glutathione
Glycine
Homeostasis
Human, Preclinical species
Hydrophobicity
LC–MS/MS
Liver
Metabolites
Mice
Monkeys
Plasma
Species
Sulfation
Taurine
Toxicity
Urine
Title Species differences in bile acids I. Plasma and urine bile acid composition
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjat.3644
https://www.ncbi.nlm.nih.gov/pubmed/29785833
https://www.proquest.com/docview/2089809375
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90T4L4Mb-qUyLIntatTT_S-ia6MRFk4IS9lTRJYYJV7Paw_95L064MEQSf8tA0hFzu7ndH7ncAN36YCldKaUcqDW0_DFM7VtxFdU9jzoViUuh8x_iFPc-ih6Gmybmta2EMP8Q64aY1o7TXWsF5Wgwa0tA3vuh76M3R_GKQUFZveJOGbzcu26pqxizb99is5p116KD-cdMT_YCXm2i1dDej_f9s9AD2KpBJ7sytOIQtlbehOzEs1asemTZFV0WPdMmk4a9etWHXpPKIqVA6gqeyR70qSN1MBU0Lmeckxd0QLuayII99MkEY_s4JzyXRCXzVfCb62Xr1NuwYXkfD6f3Yrnow2AJdu2-jN2dCZtLlGAkyhtFT5gSOwKgyEg5KNVMeZUxEqROWcC6lPJauK2OqIp3P8E6glX_k6gyIqzIaiYBlAceYT6g4EDxkMkB36XuITCy4ruWRfBqqjcSQKtMEzzDRZ2hBpxZUUilbkVAniiMHcVZgwakR3noBilGyLiyzoFvK6NeVEzSHejz_68QL2EHwZLhx3Q60Fl9LdQnbhVxelVfxG-2d3lI
link.rule.ids 315,782,786,1408,27935,27936,46066,46490
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5sPSiIj_qKzxWkp6bNexM8iba0tErBCt7CZncDFYxi2kP_vbPZpkFEEDzlkGRZdnb2-2bY-Qbg2gsSbgshzFAmgekFQWJGktno7knEGJdUcJXv6D_Rx5fwvqtkcm7KWhitD7FKuCnPKM5r5eAqId2pVENf2aztIpzXYN0LvEj1bXDdcaW4GxWNVZVmlum59KVUnrWcTvnndyz6QTC_89UCcHo7_5rqLmwveSa51RtjD9Zk1oDmWAtVL1pkUtVd5S3SJONKwnrRgC2dzSO6SGkfhkWbepmTsp8Kni5kmpEEp0MYn4qcDNpkjEz8jRGWCaJy-LJ6TdTN9eX1sAN47nUnd31z2YbB5IjunomATrlIhc0wGKQUA6jU8i2OgWXILTRsKl2HUh4mVlAwusRhkbBtETkyVCkN9xDq2Xsmj4HYMnVC7tPUZxj2cRn5nAVU-IiYnovkxICr0iDxh1bbiLWushPjGsZqDQ04Ky0VL_0tjx0rjEILqZZvwJG23moABwNlVVtmQLMw0q8jx3giqufJXz-8hI3-5GEUjwaPw1PYRC6lpXLtM6jPPufyHGq5mF8U-_IL9_ficw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50BRHE92N9RpA9WbfvpN7E3UVRpKCCt5AmKShYF7t72H_vpNluWUQQPPXQNoRMJt83Q-YbgPMwzqSnlHKYzmInjOPMSbTw0N2zRAipqZIm33H7RB9fWa9vZHKu6loYqw8xS7gZz6jOa-PgQ5V3G9HQdzG6DBDNF2EpNCzclG8EaSO4m1R9VY1klhMG9LUWnnX9bv3nPBT94JfzdLXCm8H6f2a6AWtTlkmu7bbYhAVdbEEntTLVkwvy3FRdlRekQ9JGwHqyBas2l0dsidI23FdN6nVJ6m4qeLaQt4JkOBsi5Jsqyd0lSZGHfwgiCkVMBl83r4m5tz69HLYDL4P-882tM23C4EjE9tBBOKdS5coTGApSiuFT7kauxLCSSRfNmuvAp1SyzI0rPpf5IlGepxJfM5PQCHahVXwWeh-Ip3OfyYjmkcCgT-okkiKmKkK8DAOkJm04q-3Bh1Zrg1tVZZ_jGnKzhm04qg3Fp95Wct9lCXORaEVt2LPGmw3gY5hsKsva0Kls9OvIHM9D8zz464ensJz2Bvzh7vH-EFaQSFmdXO8IWqOvsT6GxVKNT6pd-Q1ieeEi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Species+differences+in+bile+acids+I.+Plasma+and+urine+bile+acid+composition&rft.jtitle=Journal+of+applied+toxicology&rft.au=Thakare%2C+Rhishikesh&rft.au=Alamoudi%2C+Jawaher+Abdullah&rft.au=Gautam%2C+Nagsen&rft.au=Rodrigues%2C+A.+David&rft.date=2018-10-01&rft.issn=0260-437X&rft.eissn=1099-1263&rft.volume=38&rft.issue=10&rft.spage=1323&rft.epage=1335&rft_id=info:doi/10.1002%2Fjat.3644&rft.externalDBID=10.1002%252Fjat.3644&rft.externalDocID=JAT3644
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0260-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0260-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0260-437X&client=summon