Species differences in bile acids I. Plasma and urine bile acid composition
Maintenance of bile acid (BA) homeostasis is essential to achieve their physiologic functions and avoid their toxic effects. The marked differences in BA composition between preclinical safety models and humans may play a major role in the poor prediction of drug‐induced liver injury using preclinic...
Saved in:
Published in: | Journal of applied toxicology Vol. 38; no. 10; pp. 1323 - 1335 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Wiley Subscription Services, Inc
01-10-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Maintenance of bile acid (BA) homeostasis is essential to achieve their physiologic functions and avoid their toxic effects. The marked differences in BA composition between preclinical safety models and humans may play a major role in the poor prediction of drug‐induced liver injury using preclinical models. We compared the composition of plasma and urinary BAs and their metabolites between humans and several animal species. Total BA pools and their composition varied widely among different species. Highest sulfation of BAs was observed in human and chimpanzee. Glycine amidation was predominant in human, minipig, hamster and rabbit, while taurine amidation was predominant in mice, rat and dogs. BA profiles consisted primarily of tri‐OH BAs in hamster, rat, dog and mice, di‐OH BAs in human, rabbit and minipig, and mono‐OH BA in chimpanzee. BA profiles comprised primarily hydrophilic and less toxic BAs in mice, rat, pig and hamster, while it primarily comprised hydrophobic and more toxic BAs in human, rabbit and chimpanzee. Therefore, the hydrophobicity index was lowest in minipig and mice, while it was highest in rabbit, monkey and human. Glucuronidation and glutathione conjugation were low in all species across all BAs. Total concentration of BAs in urine was up to 10× higher and more hydrophilic than plasma in most species. This was due to the presence of more tri‐OH, amidated, sulfated and primary BAs, in urine compared to plasma. In general, BA profiles of chimpanzee and monkeys were most similar to human, while minipig, rat and mice were most dissimilar to human.
The marked differences in bile acid (BA) composition between preclinical safety models and humans may play a major role in the poor prediction of drug‐induced liver injury. We compared the composition of plasma and urinary BAs and their metabolites between humans and several animal species. BA profiles varied widely among different species and it comprised primarily hydrophilic and less toxic BAs in mice, rat, pig and hamster, while it primarily comprised hydrophobic and more toxic BAs in human, rabbit and chimpanzee. In general, BA profiles of chimpanzee and monkeys were most similar to humans, while minipig, rat and mice were most dissimilar to humans. |
---|---|
AbstractList | Maintenance of bile acid (BA) homeostasis is essential to achieve their physiologic functions and avoid their toxic effects. The marked differences in BA composition between preclinical safety models and humans may play a major role in the poor prediction of drug‐induced liver injury using preclinical models. We compared the composition of plasma and urinary BAs and their metabolites between humans and several animal species. Total BA pools and their composition varied widely among different species. Highest sulfation of BAs was observed in human and chimpanzee. Glycine amidation was predominant in human, minipig, hamster and rabbit, while taurine amidation was predominant in mice, rat and dogs. BA profiles consisted primarily of tri‐OH BAs in hamster, rat, dog and mice, di‐OH BAs in human, rabbit and minipig, and mono‐OH BA in chimpanzee. BA profiles comprised primarily hydrophilic and less toxic BAs in mice, rat, pig and hamster, while it primarily comprised hydrophobic and more toxic BAs in human, rabbit and chimpanzee. Therefore, the hydrophobicity index was lowest in minipig and mice, while it was highest in rabbit, monkey and human. Glucuronidation and glutathione conjugation were low in all species across all BAs. Total concentration of BAs in urine was up to 10× higher and more hydrophilic than plasma in most species. This was due to the presence of more tri‐OH, amidated, sulfated and primary BAs, in urine compared to plasma. In general, BA profiles of chimpanzee and monkeys were most similar to human, while minipig, rat and mice were most dissimilar to human.
The marked differences in bile acid (BA) composition between preclinical safety models and humans may play a major role in the poor prediction of drug‐induced liver injury. We compared the composition of plasma and urinary BAs and their metabolites between humans and several animal species. BA profiles varied widely among different species and it comprised primarily hydrophilic and less toxic BAs in mice, rat, pig and hamster, while it primarily comprised hydrophobic and more toxic BAs in human, rabbit and chimpanzee. In general, BA profiles of chimpanzee and monkeys were most similar to humans, while minipig, rat and mice were most dissimilar to humans. Maintenance of bile acid (BA) homeostasis is essential to achieve their physiologic functions and avoid their toxic effects. The marked differences in BA composition between preclinical safety models and humans may play a major role in the poor prediction of drug-induced liver injury using preclinical models. We compared the composition of plasma and urinary BAs and their metabolites between humans and several animal species. Total BA pools and their composition varied widely among different species. Highest sulfation of BAs was observed in human and chimpanzee. Glycine amidation was predominant in human, minipig, hamster and rabbit, while taurine amidation was predominant in mice, rat and dogs. BA profiles consisted primarily of tri-OH BAs in hamster, rat, dog and mice, di-OH BAs in human, rabbit and minipig, and mono-OH BA in chimpanzee. BA profiles comprised primarily hydrophilic and less toxic BAs in mice, rat, pig and hamster, while it primarily comprised hydrophobic and more toxic BAs in human, rabbit and chimpanzee. Therefore, the hydrophobicity index was lowest in minipig and mice, while it was highest in rabbit, monkey and human. Glucuronidation and glutathione conjugation were low in all species across all BAs. Total concentration of BAs in urine was up to 10× higher and more hydrophilic than plasma in most species. This was due to the presence of more tri-OH, amidated, sulfated and primary BAs, in urine compared to plasma. In general, BA profiles of chimpanzee and monkeys were most similar to human, while minipig, rat and mice were most dissimilar to human. Abstract Maintenance of bile acid (BA) homeostasis is essential to achieve their physiologic functions and avoid their toxic effects. The marked differences in BA composition between preclinical safety models and humans may play a major role in the poor prediction of drug‐induced liver injury using preclinical models. We compared the composition of plasma and urinary BAs and their metabolites between humans and several animal species. Total BA pools and their composition varied widely among different species. Highest sulfation of BAs was observed in human and chimpanzee. Glycine amidation was predominant in human, minipig, hamster and rabbit, while taurine amidation was predominant in mice, rat and dogs. BA profiles consisted primarily of tri‐OH BAs in hamster, rat, dog and mice, di‐OH BAs in human, rabbit and minipig, and mono‐OH BA in chimpanzee. BA profiles comprised primarily hydrophilic and less toxic BAs in mice, rat, pig and hamster, while it primarily comprised hydrophobic and more toxic BAs in human, rabbit and chimpanzee. Therefore, the hydrophobicity index was lowest in minipig and mice, while it was highest in rabbit, monkey and human. Glucuronidation and glutathione conjugation were low in all species across all BAs. Total concentration of BAs in urine was up to 10× higher and more hydrophilic than plasma in most species. This was due to the presence of more tri‐OH, amidated, sulfated and primary BAs, in urine compared to plasma. In general, BA profiles of chimpanzee and monkeys were most similar to human, while minipig, rat and mice were most dissimilar to human. The marked differences in bile acid (BA) composition between preclinical safety models and humans may play a major role in the poor prediction of drug‐induced liver injury. We compared the composition of plasma and urinary BAs and their metabolites between humans and several animal species. BA profiles varied widely among different species and it comprised primarily hydrophilic and less toxic BAs in mice, rat, pig and hamster, while it primarily comprised hydrophobic and more toxic BAs in human, rabbit and chimpanzee. In general, BA profiles of chimpanzee and monkeys were most similar to humans, while minipig, rat and mice were most dissimilar to humans. |
Author | Alamoudi, Jawaher Abdullah Gautam, Nagsen Alnouti, Yazen Rodrigues, A. David Thakare, Rhishikesh |
Author_xml | – sequence: 1 givenname: Rhishikesh orcidid: 0000-0002-8219-6830 surname: Thakare fullname: Thakare, Rhishikesh organization: University of Nebraska Medical Center – sequence: 2 givenname: Jawaher Abdullah surname: Alamoudi fullname: Alamoudi, Jawaher Abdullah organization: University of Nebraska Medical Center – sequence: 3 givenname: Nagsen surname: Gautam fullname: Gautam, Nagsen organization: University of Nebraska Medical Center – sequence: 4 givenname: A. David surname: Rodrigues fullname: Rodrigues, A. David organization: Pharmacokinetics, Pharmacodynamics & Metabolism, Medicine Design, Pfizer Inc – sequence: 5 givenname: Yazen surname: Alnouti fullname: Alnouti, Yazen email: yalnouti@unmc.edu organization: University of Nebraska Medical Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29785833$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kE1LAzEQhoMo9kPBXyABL1625mN3kxxL8aNaULCCt5BNspDSza5JF-m_N7VVT55mYB7emXlG4Ni33gJwgdEEI0RuVmozoWWeH4EhRkJkmJT0GAwRKVGWU_Y-AKMYVwilGeGnYEAE4wWndAieXjurnY3QuLq2wXqdeudh5dYWKu1MhPMJfFmr2CiovIF9cN7-jaFum66NbuNafwZOarWO9vxQx-Dt7nY5e8gWz_fz2XSR6RwXecYLyrSpDVY8R4xhnNeoQLrIBddIWFVbShjTvEJlupjTiihhMDaCWI4FZ3QMrva5XWg_ehs3ctX2waeVkiAuOBKUFYm63lM6tDEGW8suuEaFrcRI7qzJZE3urCX08hDYV401v-CPpgRke-Az_b39N0g-TpffgV9_IXVI |
CitedBy_id | crossref_primary_10_1111_jpn_13969 crossref_primary_10_3390_nu12061837 crossref_primary_10_1016_j_jsbmb_2022_106100 crossref_primary_10_1016_j_isci_2023_107922 crossref_primary_10_1007_s11883_020_00863_7 crossref_primary_10_3727_105221619X15614873062730 crossref_primary_10_1111_bph_16041 crossref_primary_10_1002_imt2_128 crossref_primary_10_1084_jem_20232148 crossref_primary_10_1016_j_livres_2020_05_001 crossref_primary_10_1016_j_bbadis_2020_165958 crossref_primary_10_1038_s41579_022_00805_x crossref_primary_10_3389_fmicb_2022_1023623 crossref_primary_10_1126_sciadv_adj0146 crossref_primary_10_1016_j_pharmthera_2023_108457 crossref_primary_10_1002_elps_202000139 crossref_primary_10_1039_D3AN00900A crossref_primary_10_3390_metabo14040178 crossref_primary_10_3390_metabo14040211 crossref_primary_10_1039_D3AN01237A crossref_primary_10_3389_fvets_2021_748803 crossref_primary_10_1016_j_bbalip_2021_159006 crossref_primary_10_1194_jlr_RA119000395 crossref_primary_10_1002_jssc_202300233 crossref_primary_10_1124_dmd_120_090464 crossref_primary_10_3389_fvets_2024_1380920 crossref_primary_10_3390_biomedicines11020384 crossref_primary_10_1093_toxsci_kfy271 crossref_primary_10_1248_bpbreports_3_2_60 crossref_primary_10_1089_aivt_2023_0004 crossref_primary_10_1039_D3AY00313B crossref_primary_10_1038_s41392_024_01811_6 crossref_primary_10_3389_fcell_2021_758632 crossref_primary_10_3390_metabo11070442 crossref_primary_10_1021_jasms_0c00435 crossref_primary_10_3390_metabo12121230 crossref_primary_10_1016_j_phrs_2023_106943 crossref_primary_10_1194_jlr_D120000726 crossref_primary_10_1038_s41598_022_06692_9 crossref_primary_10_1016_j_jhepr_2023_100871 crossref_primary_10_1248_bpbreports_2_2_29 crossref_primary_10_1210_endocr_bqac155 crossref_primary_10_3390_ijms22137163 crossref_primary_10_1371_journal_pone_0298602 crossref_primary_10_1016_j_taap_2022_116008 crossref_primary_10_1124_dmd_121_000385 crossref_primary_10_3390_ijms24032489 crossref_primary_10_1111_liv_14800 crossref_primary_10_1016_j_cbi_2021_109525 crossref_primary_10_1038_s42003_024_06321_3 crossref_primary_10_1016_j_xphs_2019_03_021 crossref_primary_10_1002_rcm_9731 crossref_primary_10_1007_s00204_023_03583_4 crossref_primary_10_1007_s00281_021_00869_6 crossref_primary_10_1038_s41575_023_00771_6 crossref_primary_10_4062_biomolther_2021_059 crossref_primary_10_14814_phy2_15368 crossref_primary_10_1016_j_tox_2021_152848 crossref_primary_10_3390_metabo12070633 crossref_primary_10_3390_cells11091591 crossref_primary_10_1186_s12944_022_01654_6 crossref_primary_10_1016_j_chroma_2021_462422 crossref_primary_10_1038_s41598_024_55241_z crossref_primary_10_1017_S0007114520001774 crossref_primary_10_1038_s41587_021_01045_9 crossref_primary_10_3390_nu13010209 crossref_primary_10_1038_s41575_024_00914_3 crossref_primary_10_1038_s41586_022_05380_y crossref_primary_10_3390_ijms21186495 crossref_primary_10_3390_ijms21186534 crossref_primary_10_1016_j_metabol_2021_154707 crossref_primary_10_1124_dmd_120_000011 crossref_primary_10_1155_2022_5473752 crossref_primary_10_1016_j_heliyon_2023_e15757 crossref_primary_10_1152_ajpgi_00017_2023 crossref_primary_10_1016_j_livres_2022_11_005 crossref_primary_10_3390_ijms23126496 |
Cites_doi | 10.1080/15287398209530200 10.1016/0009-8981(91)90299-R 10.1016/j.jchromb.2014.11.001 10.1136/gut.26.1.38 10.1016/S0022-2275(20)42614-8 10.1194/jlr.M007641 10.1016/j.jhep.2009.05.012 10.1124/dmd.115.065425 10.1038/sj.cdd.4400560 10.1023/A:1013699130991 10.1111/j.1365-2036.2006.03117.x 10.3748/wjg.15.1677 10.1007/BF01076210 10.1093/toxsci/kfn268 10.1002/rcm.5072 10.1074/jbc.M105117200 10.1016/S0168-8278(97)80147-X 10.1007/s10620-015-3776-8 10.1292/jvms.56.299 10.1093/toxsci/kfu228 10.1002/cphy.c120023 10.1186/1743-7075-7-73 10.1021/pr500920q 10.1016/0304-3835(93)90227-Z 10.1002/hep.20948 10.1210/jc.2013-3367 10.1016/0006-2944(79)90003-6 10.1093/toxsci/kft176 10.1016/S0022-2275(20)39455-4 10.1016/j.jpba.2005.09.013 10.1016/0306-9877(86)90137-4 10.1007/s10329-003-0074-4 10.1053/gast.2001.29608 10.1093/toxsci/kfu195 10.1152/ajpgi.00258.2011 10.2741/3399 10.1016/j.jpba.2011.03.035 10.1002/hep.21337 10.1007/978-3-642-14541-4_8 10.1016/j.clinre.2015.12.017 10.1093/toxsci/kfr177 10.1016/j.jchromb.2013.10.019 10.7326/0003-4819-137-12-200212170-00007 10.1073/pnas.98.4.2011 10.1016/j.cmet.2013.03.013 10.1016/S0022-2275(20)38175-X 10.1042/bj1780201 10.1016/j.taap.2012.02.002 10.1248/bpb.25.1381 10.1292/jvms.53.81 10.1021/ac503816u 10.1097/00005176-198601000-00005 10.1007/s40139-012-0003-6 10.1038/ijo.2016.46 10.1016/j.jpba.2016.09.023 10.1159/000460025 10.1371/journal.pone.0087548 10.1080/095530099140663 10.1016/0016-5085(86)90457-9 10.1097/TP.0b013e3181954fee 10.2131/jts.37.105 10.1194/jlr.D028803 10.1385/CT:5:1:063 10.1007/s00253-010-2998-0 10.1002/mnfr.201500686 10.1002/hep.1840040416 10.1016/j.dld.2010.03.015 10.1111/jvim.13841 10.1111/j.1365-2265.2010.03886.x 10.1016/S0304-4165(01)00096-4 10.1042/bj3560481 10.1586/17474124.2014.922871 10.1016/S0022-2275(20)32466-4 10.1081/DMR-200033475 10.1093/toxsci/kfu227 10.1053/gast.2001.24833 10.1002/hep.1840040321 10.1371/journal.pone.0131010 10.1007/BF01891965 10.1097/00005176-199601000-00014 10.1016/j.taap.2013.01.018 10.1016/S0022-2275(20)38331-0 10.1074/jbc.M105300200 10.1016/S0022-2275(20)41426-9 10.1074/jbc.M805804200 10.1016/j.dld.2011.10.025 10.1016/S0016-5085(19)32219-X 10.1016/j.chroma.2010.11.062 10.2460/javma.2003.222.1368 10.1007/s11695-016-2087-2 10.1093/chromsci/bmu167 10.1111/j.1939-1676.2003.tb02425.x 10.3164/jcbn.13-46 10.1002/hep.1840050325 10.1016/j.jchromb.2012.05.015 10.1021/mp060009t 10.1016/j.bbrc.2011.11.032 10.1194/jlr.M500427-JLR200 10.3109/00498250903514607 10.1016/0022-4731(77)90277-1 10.4254/wjh.v9.i1.30 |
ContentType | Journal Article |
Copyright | Copyright © 2018 John Wiley & Sons, Ltd. 2018 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2018 John Wiley & Sons, Ltd. – notice: 2018 John Wiley & Sons, Ltd. |
DBID | NPM AAYXX CITATION 7ST 7TK 7U7 C1K K9. SOI |
DOI | 10.1002/jat.3644 |
DatabaseName | PubMed CrossRef Environment Abstracts Neurosciences Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management ProQuest Health & Medical Complete (Alumni) Environment Abstracts |
DatabaseTitle | PubMed CrossRef ProQuest Health & Medical Complete (Alumni) Toxicology Abstracts Neurosciences Abstracts Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | PubMed CrossRef ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1099-1263 |
EndPage | 1335 |
ExternalDocumentID | 10_1002_jat_3644 29785833 JAT3644 |
Genre | article Journal Article |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EDH EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GWYGA H.T H.X HF~ HGLYW HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6Q MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ UB1 V8K VH1 W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWP WXSBR WYISQ XG1 XPP XV2 YCJ YHZ ZXP ZZTAW ~02 ~IA ~KM ~WT NPM AAYXX CITATION 7ST 7TK 7U7 C1K K9. SOI |
ID | FETCH-LOGICAL-c4154-8537cdfd1a84077114f050c5498c09eafe3277c8b0600083b2a9d11d92e819873 |
IEDL.DBID | 33P |
ISSN | 0260-437X |
IngestDate | Thu Oct 10 22:12:29 EDT 2024 Fri Aug 23 00:19:10 EDT 2024 Sat Sep 28 08:33:56 EDT 2024 Sat Aug 24 01:11:21 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Urine Drug induced liver injury LC-MS/MS Plasma Bile acids Human, Preclinical species |
Language | English |
License | Copyright © 2018 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4154-8537cdfd1a84077114f050c5498c09eafe3277c8b0600083b2a9d11d92e819873 |
ORCID | 0000-0002-8219-6830 |
PMID | 29785833 |
PQID | 2089809375 |
PQPubID | 105373 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2089809375 crossref_primary_10_1002_jat_3644 pubmed_primary_29785833 wiley_primary_10_1002_jat_3644_JAT3644 |
PublicationCentury | 2000 |
PublicationDate | October 2018 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: October 2018 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Bognor Regis |
PublicationSubtitle | JAT |
PublicationTitle | Journal of applied toxicology |
PublicationTitleAlternate | J Appl Toxicol |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 3 2009; 87 2013; 1 2002; 19 1988; 103 2011; 55 2016; 30 1985; 26 1989; 30 2009; 14 2006; 24 2004; 36 1971; 12 1986; 5 2015; 87 2015b; 143 2016; 40 2013; 942–943 1979; 22 2010; 7 2012; 899 2011; 123 2009; 15 2014; 99 1990; 31 1986; 91 2011; 416 2015; 53 2004; 45 2015; 976–977 2011; 74 2002; 137 2001; 1526 1986; 19 1997; 27 2012; 37 1992; 33 2010; 40 2001; 276 2010; 42 2006; 40 1984; 4 2015; 60 2015a; 143 2006; 44 2015; 64 1978; 40 2006; 47 2005; 5 1984; 9 2011; 89 2009; 108 2003; 222 1991; 203 2012; 44 2014; 142 2016; 26 2010; 51 1991; 53 1982; 11 1982; 99 2003; 17 1988; 30 2017; 9 1974; 19 2012; 53 1982; 23 2011; 201 2009; 51 2013; 17 1993; 70 2015; 43 1977; 73 1982; 9 2009; 284 2011; 25 2014; 9 2014; 8 2014; 54 1996; 22 2001; 98 2001; 121 2012; 261 2015; 14 2001; 120 1985; 5 2015; 10 2005; 42 2013; 268 2006; 3 2012; 302 1999; 6 2002; 25 1998; 39 1979; 178 1994; 56 2013; 136 1975; 69 1999; 75 2011; 1218 2016; 60 2016; 131 2001; 356 1977; 8 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_26_1 e_1_2_7_49_1 Obinata K. (e_1_2_7_64_1) 1988; 30 Hagey L. R. (e_1_2_7_36_1) 1998; 39 Cowen A. E. (e_1_2_7_23_1) 1975; 69 e_1_2_7_90_1 e_1_2_7_94_1 Armstrong M. J. (e_1_2_7_7_1) 1982; 23 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_33_1 e_1_2_7_56_1 e_1_2_7_37_1 Powell A. A. (e_1_2_7_75_1) 2001; 356 e_1_2_7_4_1 e_1_2_7_105_1 e_1_2_7_8_1 Takita M. (e_1_2_7_91_1) 1988; 103 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 Palmer R. H. (e_1_2_7_68_1) 1971; 12 Heuman D. M. (e_1_2_7_38_1) 1989; 30 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_59_1 e_1_2_7_78_1 Pattinson N. R. (e_1_2_7_71_1) 1984; 9 Palmer R. H. (e_1_2_7_69_1) 1982; 99 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_9_1 Roda A. (e_1_2_7_79_1) 1990; 31 e_1_2_7_102_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_107_1 Hofmann A. F. (e_1_2_7_42_1) 1992; 33 e_1_2_7_80_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_27_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 Mohankumar N. (e_1_2_7_61_1) 2015; 64 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 |
References_xml | – volume: 284 start-page: 3354 year: 2009 end-page: 3364 article-title: Characterization of enantiomeric bile acid‐induced apoptosis in colon cancer cell lines publication-title: Journal of Biological Chemistry – volume: 98 start-page: 2011 issue: 4 year: 2001 end-page: 2016 article-title: Targeted inactivation of sister of P‐glycoprotein gene (spgp) in mice results in nonprogressive but persistent intrahepatic cholestasis publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 12 start-page: 680 year: 1971 end-page: 687 article-title: Bile acid sulfates. II. Formation, metabolism, and excretion of lithocholic acid sulfates in the rat publication-title: Journal of Lipid Research – volume: 10 year: 2015 article-title: Comparison of bile acids and acetaminophen protein adducts in children and adolescents with acetaminophen toxicity publication-title: PLoS One – volume: 22 start-page: 165 year: 1979 end-page: 174 article-title: The effect of bile duct ligation on hepatic bile acid sulfotransferase activity in the hamster publication-title: Biochemical Medicine – volume: 5 start-page: 23 year: 1986 end-page: 29 article-title: Sulfated and nonsulfated bile acids in urine of patients with biliary atresia: analysis of bile acids by high‐performance liquid chromatography publication-title: Journal of Pediatric Gastroenterology and Nutrition – volume: 51 start-page: 565 year: 2009 end-page: 580 article-title: New molecular insights into the mechanisms of cholestasis publication-title: Journal of Hepatology – volume: 131 start-page: 473 year: 2016 end-page: 481 article-title: Bile acid profiles in diabetic (db/db) mice and their wild type littermates publication-title: Journal of Pharmaceutical and Biomedical Analysis – volume: 69 start-page: 59 year: 1975 end-page: 66 article-title: Metabolism of lethocholate in healthy man. I. Biotransformation and biliary excretion of intravenously administered lithocholate, lithocholylglycine, and their sulfates publication-title: Gastroenterology – volume: 99 start-page: 533 year: 1982 end-page: 538 article-title: Lithocholate metabolism in baboons fed chenodeoxycholate publication-title: Journal of Laboratory and Clinical Medicine – volume: 11 start-page: 59 year: 1982 end-page: 64 article-title: Lithocholate sulphation in the baboon publication-title: Journal of Medical Primatology – volume: 8 start-page: 1077 year: 1977 end-page: 1084 article-title: The bile acid composition of rabbit and cat gall‐bladder bile publication-title: Journal of Steroid Biochemistry – volume: 108 start-page: 225 year: 2009 end-page: 246 article-title: Bile acid sulfation: a pathway of bile acid elimination and detoxification publication-title: Toxicological Sciences – volume: 276 start-page: 41690 year: 2001 end-page: 41699 article-title: Transcriptional regulation of the human sterol 12alpha‐hydroxylase gene (CYP8B1): roles of hepatocyte nuclear factor 4alpha in mediating bile acid repression publication-title: Journal of Biological Chemistry – volume: 103 start-page: 778 year: 1988 end-page: 786 article-title: Effect of bile duct ligation on bile acid and cholesterol metabolism in rats publication-title: Journal of Biological Chemistry – volume: 23 start-page: 70 year: 1982 end-page: 80 article-title: The hydrophobic‐hydrophilic balance of bile salts. Inverse correlation between reverse‐phase high performance liquid chromatographic mobilities and micellar cholesterol‐solubilizing capacities publication-title: Journal of Lipid Research – volume: 137 start-page: 947 year: 2002 end-page: … 954 article-title: Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States publication-title: Annals of Internal Medicine – volume: 14 start-page: 850 year: 2015 end-page: 859 article-title: Profiling of serum bile acids in a healthy Chinese population using UPLC‐MS/MS publication-title: Journal of Proteome Research – volume: 89 start-page: 903 year: 2011 end-page: 915 article-title: Bacterial degradation of bile salts publication-title: Applied Microbiology and Biotechnology – volume: 53 start-page: 2231 year: 2012 end-page: 2241 article-title: Targeted profiling of circulating and hepatic bile acids in human, mouse, and rat using a UPLC‐MRM‐MS‐validated method publication-title: Journal of Lipid Research – volume: 27 start-page: 1029 year: 1997 end-page: 1040 article-title: Effects of ursodeoxycholic acid on conjugated bile acids and progesterone metabolites in serum and urine of patients with intrahepatic cholestasis of pregnancy publication-title: Journal of Hepatology – volume: 120 start-page: 1801 year: 2001 end-page: 1809 article-title: Expression of sterol 12alpha‐hydroxylase alters bile acid pool composition in primary rat hepatocytes and in vivo publication-title: Gastroenterology – volume: 37 start-page: 105 year: 2012 end-page: 121 article-title: Cattle bile but not bear bile or pig bile induces lipid profile changes and fatty liver injury in mice: mediation by cholic acid publication-title: Journal of Toxicological Sciences – volume: 40 start-page: 109 year: 1978 end-page: 118 article-title: Bile acid conjugation in the chimpanzee: effective sulfation of lithocholic acid publication-title: Archives of Toxicology – volume: 30 start-page: 477 year: 2016 end-page: 490 article-title: 2015 ACVIM Small Animal Consensus Statement on Seizure Management in Dogs publication-title: Journal of Veterinary Internal Medicine – volume: 47 start-page: 582 year: 2006 end-page: 592 article-title: Fxr(−/−) mice adapt to biliary obstruction by enhanced phase I detoxification and renal elimination of bile acids publication-title: Journal of Lipid Research – volume: 30 start-page: 719 year: 1989 end-page: 730 article-title: Quantitative estimation of the hydrophilic‐hydrophobic balance of mixed bile salt solutions publication-title: Journal of Lipid Research – volume: 9 start-page: 30 year: 2017 end-page: 37 article-title: Drug‐induced liver injury: Towards early prediction and risk stratification publication-title: World Journal of Hepatology – volume: 9 year: 2014 article-title: Evaluation of the endothelin receptor antagonists ambrisentan, bosentan, macitentan, and sitaxsentan as hepatobiliary transporter inhibitors and substrates in sandwich‐cultured human hepatocytes publication-title: PLoS One – volume: 19 start-page: 877 year: 1974 end-page: 886 article-title: Effect of dietary chenodeoxycholic acid and lithocholic acid in the rabbit publication-title: The American Journal of Digestive Diseases – volume: 45 start-page: 141 year: 2004 end-page: 145 article-title: On the possible adaptive value of coprophagy in free‐ranging chimpanzees publication-title: Primates – volume: 121 start-page: 1473 year: 2001 end-page: 1484 article-title: Adaptive regulation of bile salt transporters in kidney and liver in obstructive cholestasis in the rat publication-title: Gastroenterology – volume: 143 start-page: 296 year: 2015a end-page: 307 article-title: Urinary bile acids as biomarkers for liver diseases I. Stability of the baseline profile in healthy subjects publication-title: Toxicological Sciences – volume: 276 start-page: 38610 year: 2001 end-page: 38618 article-title: The bile acid glycochenodeoxycholate induces trail‐receptor 2/DR5 expression and apoptosis publication-title: Journal of Biological Chemistry – volume: 30 start-page: 299 year: 1988 end-page: 303 article-title: Sulfated and nonsulfated urinary bile acids in cholestasis in children publication-title: Acta Paediatrica Japonica – volume: 44 start-page: 746 year: 2006 end-page: 764 article-title: Primary sclerosing cholangitis: summary of a workshop publication-title: Hepatology – volume: 26 start-page: 2384 year: 2016 end-page: 2392 article-title: Effects of bariatric surgery on serum bile acid composition and conjugation in a diabetic rat model publication-title: Obesity Surgery – volume: 25 start-page: 1381 year: 2002 end-page: 1384 article-title: Biliary, fecal and plasma deoxycholic acid in rabbit, hamster, guinea pig, and rat: comparative study and implication in colon cancer publication-title: Biological and Pharmaceutical Bulletin – volume: 1 start-page: 29 year: 2013 end-page: 35 article-title: Bile acid receptors and liver cancer publication-title: Current Pathobiology Reports – volume: 203 start-page: 269 year: 1991 end-page: 273 article-title: Deoxycholic acid is not reconverted to cholic acid in humans – a study by isotope ratio mass spectrometry publication-title: Clinica Chimica Acta – volume: 6 start-page: 842 year: 1999 end-page: 854 article-title: Ursodeoxycholic acid prevents cytochrome c release in apoptosis by inhibiting mitochondrial membrane depolarization and channel formation publication-title: Cell Death & Differentiation – volume: 143 start-page: 308 year: 2015b end-page: 318 article-title: Urinary bile acids as biomarkers for liver diseases II. Signature profiles in patients publication-title: Toxicological Sciences – volume: 40 start-page: 1179 year: 2006 end-page: 1186 article-title: High sensitive analysis of rat serum bile acids by liquid chromatography/electrospray ionization tandem mass spectrometry publication-title: Journal of Pharmaceutical and Biomedical Analysis – volume: 7 start-page: 73 year: 2010 publication-title: Nutrition & Metabolism (London) – volume: 123 start-page: 359 year: 2011 end-page: 367 article-title: Dose‐response of five bile acids on serum and liver bile Acid concentrations and hepatotoxicty in mice publication-title: Toxicological Sciences – volume: 43 start-page: 1760 year: 2015 end-page: 1768 article-title: Prediction of the clinical risk of drug‐induced cholestatic liver injury using an in vitro sandwich cultured hepatocyte assay publication-title: Drug Metabolism & Disposition – volume: 87 start-page: 1127 year: 2015 end-page: 1136 article-title: Metabolic profiling of bile acids in human and mouse blood by LC‐MS/MS in combination with phospholipid‐depletion solid‐phase extraction publication-title: Analytical Chemistry – volume: 4 start-page: 477 year: 1984 end-page: 485 article-title: Hepatic transport of sulfated and nonsulfated bile acids in the rat following relief of bile duct obstruction publication-title: Hepatology – volume: 222 start-page: 1368 year: 2003 end-page: 1375 article-title: Evaluation of urine sulfated and nonsulfated bile acids as a diagnostic test for liver disease in dogs publication-title: Journal of the American Veterinary Medical Association – volume: 31 start-page: 1433 issue: 8 year: 1990 end-page: 1443 article-title: Bile acid structure‐activity relationship: evaluation of bile acid lipophilicity using 1‐octanol/water partition coefficient and reverse phase HPLC publication-title: Journal of Lipid Research – volume: 17 start-page: 657 year: 2013 end-page: 669 article-title: Pleiotropic roles of bile acids in metabolism publication-title: Cell Metabolism – volume: 14 start-page: 2584 year: 2009 end-page: 2598 article-title: The enterohepatic circulation of bile acids in mammals: form and functions publication-title: Frontiers in Bioscience (Landmark Ed) – volume: 17 start-page: 145 year: 2003 end-page: 153 article-title: Urine sulfated and nonsulfated bile acids as a diagnostic test for liver disease in cats publication-title: Journal of Veterinary Internal Medicine – volume: 19 start-page: 57 year: 1986 end-page: 69 article-title: Bile acid‐induced liver toxicity: relation to the hydrophobic‐hydrophilic balance of bile acids publication-title: Medical Hypotheses – volume: 91 start-page: 189 year: 1986 end-page: 197 article-title: Differing effects of nor‐ursodeoxycholic or ursodeoxycholic acid on hepatic histology and bile acid metabolism in the rabbit publication-title: Gastroenterology – volume: 9 start-page: 727 year: 1982 end-page: 741 article-title: National Cooperative Gallstone Study: nonprimate toxicology of chenodeoxycholic acid publication-title: Journal of Toxicology and Environmental Health – volume: 73 start-page: 314 year: 1977 end-page: 320 article-title: Increased sulfation and decreased 7alpha‐hydroxylation of deoxycholic acid in ethinyl estradiol‐induced cholestasis in rats publication-title: Gastroenterology – volume: 44 start-page: 303 year: 2012 end-page: 310 article-title: Metabolomic profiling of 17 bile acids in serum from patients with primary biliary cirrhosis and primary sclerosing cholangitis: a pilot study publication-title: Digestive and Liver Disease – volume: 899 start-page: 135 year: 2012 end-page: 145 article-title: Bile acid profiling in human biological samples: comparison of extraction procedures and application to normal and cholestatic patients publication-title: Journal of Chromatography B Analytical Technologies in the Biomedical and Life Sciences – volume: 416 start-page: 313 issue: 3‐4 year: 2011 end-page: 317 article-title: Bile salt export pump inhibitors are associated with bile acid‐dependent drug‐induced toxicity in sandwich‐cultured hepatocytes publication-title: Biochemical and Biophysical Research Communications – volume: 142 start-page: 436 year: 2014 end-page: 444 article-title: Glycodeoxycholic acid levels as prognostic biomarker in acetaminophen‐induced acute liver failure patients publication-title: Toxicological Sciences – volume: 4 start-page: 661 year: 1984 end-page: 666 article-title: Influence of hydroxylation and conjugation of bile salts on their membrane‐damaging properties – studies on isolated hepatocytes and lipid membrane vesicles publication-title: Hepatology – volume: 201 start-page: 299 year: 2011 end-page: 323 article-title: Multidrug resistance proteins (MRPs, ABCCs): importance for pathophysiology and drug therapy publication-title: Handbook of Experimental Pharmacology – volume: 75 start-page: 209 year: 1999 end-page: 216 article-title: Modified bile acid profiles in mixed neutron and gamma‐irradiated pigs publication-title: International Journal of Radiation Biology – volume: 1526 start-page: 44 year: 2001 end-page: 52 article-title: Metabolism and effects on cholestasis of isoursodeoxycholic and ursodeoxycholic acids in bile duct ligated rats publication-title: Biochimica et Biophysica Acta – volume: 56 start-page: 299 year: 1994 end-page: 303 article-title: Changes in bile acid composition of serum and gallbladder bile in bile duct ligated dogs publication-title: Journal of Veterinary Medical Science – volume: 60 start-page: 642 year: 2016 end-page: 651 article-title: Circulating triglycerides and bile acids are reduced by a soluble wheat arabinoxylan via modulation of bile concentration and lipid digestion rates in a pig model publication-title: Molecular Nutrition & Food Research – volume: 15 start-page: 1677 year: 2009 end-page: 1689 article-title: Bile‐acid‐induced cell injury and protection publication-title: World Journal of Gastroenterology – volume: 99 start-page: 1442 year: 2014 end-page: 1451 article-title: Fasting serum taurine‐conjugated bile acids are elevated in type 2 diabetes and do not change with intensification of insulin publication-title: Journal of Clinical Endocrinology and Metabolism – volume: 53 start-page: 81 year: 1991 end-page: 86 article-title: Serum bile acid composition of the dog, cow, horse and human publication-title: Journal of Veterinary Medical Science – volume: 302 start-page: G1035 year: 2012 end-page: G1042 article-title: Ursodeoxycholate modulates bile flow and bile salt pool independently from the cystic fibrosis transmembrane regulator (Cftr) in mice publication-title: American Journal of Physiology‐Gastrointestinal and Liver Physiology – volume: 356 start-page: 481 year: 2001 end-page: 486 article-title: Bile acid hydrophobicity is correlated with induction of apoptosis and/or growth arrest in HCT116 cells publication-title: Biochemical Journal – volume: 136 start-page: 216 year: 2013 end-page: 241 article-title: A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development publication-title: Toxicological Sciences – volume: 24 start-page: 1187 year: 2006 end-page: 1195 article-title: Drug‐induced liver injury in a Swedish University hospital out‐patient hepatology clinic publication-title: Alimentary Pharmacology & Therapeutics – volume: 40 start-page: 257 year: 2016 end-page: 266 article-title: Bile acids in drug induced liver injury: Key players and surrogate markers publication-title: Clinics and Research in Hepatology and Gastroenterology – volume: 5 start-page: 492 year: 1985 end-page: 495 article-title: Biliary and urinary excretion of sulfated, glucuronidated and tetrahydroxylated bile acids in cirrhotic patients publication-title: Hepatology – volume: 33 start-page: 617 year: 1992 end-page: 626 article-title: Bile acid solubility and precipitation in vitro and in vivo: the role of conjugation, pH, and Ca ions publication-title: Journal of Lipid Research – volume: 9 start-page: 137 year: 1984 end-page: 142 article-title: Lithocholate detoxification and biliary secretion in the rat publication-title: Biochemistry International – volume: 39 start-page: 2119 year: 1998 end-page: 2124 article-title: An N‐acyl glycyltaurine conjugate of deoxycholic acid in the biliary bile acids of the rabbit publication-title: Journal of Lipid Research – volume: 53 start-page: 1060 year: 2015 end-page: 1065 article-title: Rapid determination of bile acids in bile from various mammals by reversed‐phase ultra‐fast liquid chromatography publication-title: Journal of Chromatographic Science – volume: 268 start-page: 79 year: 2013 end-page: 89 article-title: Perturbation of bile acid homeostasis is an early pathogenesis event of drug induced liver injury in rats publication-title: Toxicology and Applied Pharmacology – volume: 19 start-page: 34 year: 2002 end-page: 41 article-title: Transport activity of human MRP3 expressed in Sf9 cells: comparative studies with rat MRP3 publication-title: Pharmaceutical Research – volume: 976–977 start-page: 6 year: 2015 end-page: 18 article-title: A quantitiative LC‐MS/MS method for the measurement of arachidonic acid, prostanoids, endocannabinoids, N‐acylethanolamines and steroids in human plasma publication-title: Journal of Chromatography B Analytical Technologies in the Biomedical and Life Sciences – volume: 87 start-page: 330 year: 2009 end-page: 339 article-title: Endogenous bile salts are associated with bile duct injury in the rat liver transplantation model publication-title: Transplantation – volume: 36 start-page: 703 year: 2004 end-page: 722 article-title: Detoxification of lithocholic acid, a toxic bile acid: relevance to drug hepatotoxicity publication-title: Drug Metabolism Reviews – volume: 70 start-page: 167 year: 1993 end-page: 173 article-title: Toxicity of bile acids to colon cancer cell lines publication-title: Cancer Letters – volume: 942–943 start-page: 53 year: 2013 end-page: 62 article-title: The profile of bile acids and their sulfate metabolites in human urine and serum publication-title: Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences – volume: 54 start-page: 129 year: 2014 end-page: 135 article-title: The involvement of endoplasmic reticulum stress in bile acid‐induced hepatocellular injury publication-title: Journal of Clinical Biochemistry and Nutrition – volume: 55 start-page: 1111 year: 2011 end-page: 1119 article-title: Simultaneous characterization of bile acids and their sulfate metabolites in mouse liver, plasma, bile, and urine using LC‐MS/MS publication-title: Journal of Pharmaceutical and Biomedical Analysis – volume: 64 start-page: 634 year: 2015 end-page: 644 article-title: Drug‐induced liver injury: Diagnosing (and treating) it early publication-title: Journal of Family Practice – volume: 22 start-page: 85 year: 1996 end-page: 91 article-title: Biliary lipid composition and bile acid profiles during and after enteral fast of total parenteral nutrition in the rabbit publication-title: Journal of Pediatric Gastroenterology and Nutrition – volume: 40 start-page: 1260 year: 2016 end-page: 1267 article-title: Influence of Roux‐en‐Y gastric bypass on plasma bile acid profiles: a comparative study between rats, pigs and humans publication-title: International Journal of Obesity (London) – volume: 1218 start-page: 524 year: 2011 end-page: 533 article-title: Determination of bile acids in pig liver, pig kidney and bovine liver by gas chromatography‐chemical ionization tandem mass spectrometry with total ion chromatograms and extraction ion chromatograms publication-title: Journal of Chromatography A – volume: 40 start-page: 184 year: 2010 end-page: 194 article-title: Kinetic analysis of bile acid sulfation by stably expressed human sulfotransferase 2A1 (SULT2A1) publication-title: Xenobiotica – volume: 42 start-page: 409 year: 2010 end-page: 418 article-title: Bile salts and cholestasis publication-title: Digestive and Liver Disease – volume: 178 start-page: 201 year: 1979 end-page: 208 article-title: Membranes and bile formation. Composition of several mammalian biles and their membrane‐damaging properties publication-title: Biochemical Journal – volume: 60 start-page: 3318 year: 2015 end-page: 3328 article-title: Altered bile acid metabolome in patients with nonalcoholic steatohepatitis publication-title: Digestive Diseases and Sciences – volume: 26 start-page: 38 year: 1985 end-page: 42 article-title: Profiles of bile acids and their glucuronide and sulphate conjugates in the serum, urine and bile from patients undergoing bile drainage publication-title: Gut – volume: 25 start-page: 1847 year: 2011 end-page: 1852 article-title: Metabolomic investigation of cholestasis in a rat model using ultra‐performance liquid chromatography/tandem mass spectrometry publication-title: Rapid Communications in Mass Spectrometry – volume: 8 start-page: 721 year: 2014 end-page: 723 article-title: Predicting idiosyncratic drug‐induced liver injury: some recent advances publication-title: Expert Review of Gastroenterology & Hepatology – volume: 3 start-page: 756 year: 2006 end-page: 761 article-title: Increased serum concentrations of secondary bile salts during cholate feeding are due to coprophagy. A study with wild‐type and Atp8b1‐deficient mice publication-title: Molecular Pharmacology – volume: 261 issue: 1 year: 2012 end-page: 9 article-title: Endogenous bile acid disposition in rat and human sandwich‐cultured hepatocytes publication-title: Toxicology and Applied Pharmacology – volume: 51 start-page: 3230 year: 2010 end-page: 3242 article-title: Effects of feeding bile acids and a bile acid sequestrant on hepatic bile acid composition in mice publication-title: Journal of Lipid Research – volume: 42 start-page: 1364 year: 2005 end-page: 1372 article-title: Acetaminophen‐induced acute liver failure: results of a United States multicenter, prospective study publication-title: Hepatology – volume: 74 start-page: 67 issue: 1 year: 2011 end-page: 72 article-title: The relationship between postprandial bile acid concentration, GLP‐1, PYY and ghrelin publication-title: Clinical Endocrinology (Oxf) – volume: 5 start-page: 63 year: 2005 end-page: 73 article-title: Bile acids are toxic for isolated cardiac mitochondria: a possible cause for hepatic‐derived cardiomyopathies? publication-title: Cardiovascular Toxicology – volume: 3 start-page: 1191 year: 2013 end-page: 1212 article-title: Bile acid metabolism and signaling publication-title: Comprehensive Physiology – ident: e_1_2_7_66_1 doi: 10.1080/15287398209530200 – ident: e_1_2_7_31_1 doi: 10.1016/0009-8981(91)90299-R – ident: e_1_2_7_32_1 doi: 10.1016/j.jchromb.2014.11.001 – ident: e_1_2_7_90_1 doi: 10.1136/gut.26.1.38 – volume: 31 start-page: 1433 issue: 8 year: 1990 ident: e_1_2_7_79_1 article-title: Bile acid structure‐activity relationship: evaluation of bile acid lipophilicity using 1‐octanol/water partition coefficient and reverse phase HPLC publication-title: Journal of Lipid Research doi: 10.1016/S0022-2275(20)42614-8 contributor: fullname: Roda A. – ident: e_1_2_7_108_1 doi: 10.1194/jlr.M007641 – ident: e_1_2_7_96_1 doi: 10.1016/j.jhep.2009.05.012 – ident: e_1_2_7_89_1 doi: 10.1124/dmd.115.065425 – ident: e_1_2_7_80_1 doi: 10.1038/sj.cdd.4400560 – ident: e_1_2_7_3_1 doi: 10.1023/A:1013699130991 – ident: e_1_2_7_26_1 doi: 10.1111/j.1365-2036.2006.03117.x – volume: 9 start-page: 137 year: 1984 ident: e_1_2_7_71_1 article-title: Lithocholate detoxification and biliary secretion in the rat publication-title: Biochemistry International contributor: fullname: Pattinson N. R. – ident: e_1_2_7_72_1 doi: 10.3748/wjg.15.1677 – ident: e_1_2_7_30_1 doi: 10.1007/BF01076210 – ident: e_1_2_7_4_1 doi: 10.1093/toxsci/kfn268 – ident: e_1_2_7_6_1 doi: 10.1002/rcm.5072 – ident: e_1_2_7_107_1 doi: 10.1074/jbc.M105117200 – ident: e_1_2_7_60_1 doi: 10.1016/S0168-8278(97)80147-X – ident: e_1_2_7_29_1 doi: 10.1007/s10620-015-3776-8 – ident: e_1_2_7_99_1 doi: 10.1292/jvms.56.299 – ident: e_1_2_7_13_1 doi: 10.1093/toxsci/kfu228 – ident: e_1_2_7_19_1 doi: 10.1002/cphy.c120023 – ident: e_1_2_7_15_1 doi: 10.1186/1743-7075-7-73 – ident: e_1_2_7_105_1 doi: 10.1021/pr500920q – ident: e_1_2_7_54_1 doi: 10.1016/0304-3835(93)90227-Z – ident: e_1_2_7_52_1 doi: 10.1002/hep.20948 – volume: 103 start-page: 778 year: 1988 ident: e_1_2_7_91_1 article-title: Effect of bile duct ligation on bile acid and cholesterol metabolism in rats publication-title: Journal of Biological Chemistry contributor: fullname: Takita M. – ident: e_1_2_7_102_1 doi: 10.1210/jc.2013-3367 – ident: e_1_2_7_10_1 doi: 10.1016/0006-2944(79)90003-6 – ident: e_1_2_7_62_1 doi: 10.1093/toxsci/kft176 – volume: 12 start-page: 680 year: 1971 ident: e_1_2_7_68_1 article-title: Bile acid sulfates. II. Formation, metabolism, and excretion of lithocholic acid sulfates in the rat publication-title: Journal of Lipid Research doi: 10.1016/S0022-2275(20)39455-4 contributor: fullname: Palmer R. H. – ident: e_1_2_7_5_1 doi: 10.1016/j.jpba.2005.09.013 – ident: e_1_2_7_8_1 doi: 10.1016/0306-9877(86)90137-4 – ident: e_1_2_7_51_1 doi: 10.1007/s10329-003-0074-4 – ident: e_1_2_7_55_1 doi: 10.1053/gast.2001.29608 – volume: 69 start-page: 59 year: 1975 ident: e_1_2_7_23_1 article-title: Metabolism of lethocholate in healthy man. I. Biotransformation and biliary excretion of intravenously administered lithocholate, lithocholylglycine, and their sulfates publication-title: Gastroenterology contributor: fullname: Cowen A. E. – ident: e_1_2_7_103_1 doi: 10.1093/toxsci/kfu195 – ident: e_1_2_7_14_1 doi: 10.1152/ajpgi.00258.2011 – ident: e_1_2_7_41_1 doi: 10.2741/3399 – ident: e_1_2_7_43_1 doi: 10.1016/j.jpba.2011.03.035 – ident: e_1_2_7_53_1 doi: 10.1002/hep.21337 – ident: e_1_2_7_50_1 doi: 10.1007/978-3-642-14541-4_8 – ident: e_1_2_7_82_1 doi: 10.1016/j.clinre.2015.12.017 – ident: e_1_2_7_86_1 doi: 10.1093/toxsci/kfr177 – ident: e_1_2_7_11_1 doi: 10.1016/j.jchromb.2013.10.019 – ident: e_1_2_7_67_1 doi: 10.7326/0003-4819-137-12-200212170-00007 – ident: e_1_2_7_97_1 doi: 10.1073/pnas.98.4.2011 – ident: e_1_2_7_25_1 doi: 10.1016/j.cmet.2013.03.013 – volume: 23 start-page: 70 year: 1982 ident: e_1_2_7_7_1 article-title: The hydrophobic‐hydrophilic balance of bile salts. Inverse correlation between reverse‐phase high performance liquid chromatographic mobilities and micellar cholesterol‐solubilizing capacities publication-title: Journal of Lipid Research doi: 10.1016/S0022-2275(20)38175-X contributor: fullname: Armstrong M. J. – ident: e_1_2_7_22_1 doi: 10.1042/bj1780201 – ident: e_1_2_7_58_1 doi: 10.1016/j.taap.2012.02.002 – ident: e_1_2_7_48_1 doi: 10.1248/bpb.25.1381 – ident: e_1_2_7_100_1 doi: 10.1292/jvms.53.81 – ident: e_1_2_7_37_1 doi: 10.1021/ac503816u – ident: e_1_2_7_63_1 doi: 10.1097/00005176-198601000-00005 – ident: e_1_2_7_98_1 doi: 10.1007/s40139-012-0003-6 – ident: e_1_2_7_87_1 doi: 10.1038/ijo.2016.46 – ident: e_1_2_7_16_1 doi: 10.1016/j.jpba.2016.09.023 – ident: e_1_2_7_27_1 doi: 10.1159/000460025 – ident: e_1_2_7_56_1 doi: 10.1371/journal.pone.0087548 – ident: e_1_2_7_81_1 doi: 10.1080/095530099140663 – ident: e_1_2_7_21_1 doi: 10.1016/0016-5085(86)90457-9 – ident: e_1_2_7_17_1 doi: 10.1097/TP.0b013e3181954fee – ident: e_1_2_7_101_1 doi: 10.2131/jts.37.105 – ident: e_1_2_7_33_1 doi: 10.1194/jlr.D028803 – ident: e_1_2_7_28_1 doi: 10.1385/CT:5:1:063 – ident: e_1_2_7_73_1 doi: 10.1007/s00253-010-2998-0 – ident: e_1_2_7_35_1 doi: 10.1002/mnfr.201500686 – ident: e_1_2_7_83_1 doi: 10.1002/hep.1840040416 – volume: 64 start-page: 634 year: 2015 ident: e_1_2_7_61_1 article-title: Drug‐induced liver injury: Diagnosing (and treating) it early publication-title: Journal of Family Practice contributor: fullname: Mohankumar N. – ident: e_1_2_7_57_1 doi: 10.1016/j.dld.2010.03.015 – ident: e_1_2_7_74_1 doi: 10.1111/jvim.13841 – ident: e_1_2_7_78_1 doi: 10.1111/j.1365-2265.2010.03886.x – ident: e_1_2_7_76_1 doi: 10.1016/S0304-4165(01)00096-4 – volume: 356 start-page: 481 year: 2001 ident: e_1_2_7_75_1 article-title: Bile acid hydrophobicity is correlated with induction of apoptosis and/or growth arrest in HCT116 cells publication-title: Biochemical Journal doi: 10.1042/bj3560481 contributor: fullname: Powell A. A. – ident: e_1_2_7_18_1 doi: 10.1586/17474124.2014.922871 – volume: 39 start-page: 2119 year: 1998 ident: e_1_2_7_36_1 article-title: An N‐acyl glycyltaurine conjugate of deoxycholic acid in the biliary bile acids of the rabbit publication-title: Journal of Lipid Research doi: 10.1016/S0022-2275(20)32466-4 contributor: fullname: Hagey L. R. – ident: e_1_2_7_40_1 doi: 10.1081/DMR-200033475 – ident: e_1_2_7_12_1 doi: 10.1093/toxsci/kfu227 – ident: e_1_2_7_70_1 doi: 10.1053/gast.2001.24833 – volume: 30 start-page: 299 year: 1988 ident: e_1_2_7_64_1 article-title: Sulfated and nonsulfated urinary bile acids in cholestasis in children publication-title: Acta Paediatrica Japonica contributor: fullname: Obinata K. – ident: e_1_2_7_20_1 doi: 10.1002/hep.1840040321 – ident: e_1_2_7_46_1 doi: 10.1371/journal.pone.0131010 – ident: e_1_2_7_84_1 doi: 10.1007/BF01891965 – ident: e_1_2_7_24_1 doi: 10.1097/00005176-199601000-00014 – ident: e_1_2_7_106_1 doi: 10.1016/j.taap.2013.01.018 – volume: 30 start-page: 719 year: 1989 ident: e_1_2_7_38_1 article-title: Quantitative estimation of the hydrophilic‐hydrophobic balance of mixed bile salt solutions publication-title: Journal of Lipid Research doi: 10.1016/S0022-2275(20)38331-0 contributor: fullname: Heuman D. M. – ident: e_1_2_7_39_1 doi: 10.1074/jbc.M105300200 – volume: 33 start-page: 617 year: 1992 ident: e_1_2_7_42_1 article-title: Bile acid solubility and precipitation in vitro and in vivo: the role of conjugation, pH, and Ca2+ ions publication-title: Journal of Lipid Research doi: 10.1016/S0022-2275(20)41426-9 contributor: fullname: Hofmann A. F. – volume: 99 start-page: 533 year: 1982 ident: e_1_2_7_69_1 article-title: Lithocholate metabolism in baboons fed chenodeoxycholate publication-title: Journal of Laboratory and Clinical Medicine contributor: fullname: Palmer R. H. – ident: e_1_2_7_49_1 doi: 10.1074/jbc.M805804200 – ident: e_1_2_7_94_1 doi: 10.1016/j.dld.2011.10.025 – ident: e_1_2_7_47_1 doi: 10.1016/S0016-5085(19)32219-X – ident: e_1_2_7_95_1 doi: 10.1016/j.chroma.2010.11.062 – ident: e_1_2_7_9_1 doi: 10.2460/javma.2003.222.1368 – ident: e_1_2_7_104_1 doi: 10.1007/s11695-016-2087-2 – ident: e_1_2_7_85_1 doi: 10.1093/chromsci/bmu167 – ident: e_1_2_7_93_1 doi: 10.1111/j.1939-1676.2003.tb02425.x – ident: e_1_2_7_2_1 doi: 10.3164/jcbn.13-46 – ident: e_1_2_7_88_1 doi: 10.1002/hep.1840050325 – ident: e_1_2_7_45_1 doi: 10.1016/j.jchromb.2012.05.015 – ident: e_1_2_7_34_1 doi: 10.1021/mp060009t – ident: e_1_2_7_65_1 doi: 10.1016/j.bbrc.2011.11.032 – ident: e_1_2_7_59_1 doi: 10.1194/jlr.M500427-JLR200 – ident: e_1_2_7_44_1 doi: 10.3109/00498250903514607 – ident: e_1_2_7_92_1 doi: 10.1016/0022-4731(77)90277-1 – ident: e_1_2_7_77_1 doi: 10.4254/wjh.v9.i1.30 |
SSID | ssj0009928 |
Score | 2.5357342 |
Snippet | Maintenance of bile acid (BA) homeostasis is essential to achieve their physiologic functions and avoid their toxic effects. The marked differences in BA... Abstract Maintenance of bile acid (BA) homeostasis is essential to achieve their physiologic functions and avoid their toxic effects. The marked differences in... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1323 |
SubjectTerms | Acids Animal models Bile Bile acids Composition Conjugation Drug induced liver injury Glutathione Glycine Homeostasis Human, Preclinical species Hydrophobicity LC–MS/MS Liver Metabolites Mice Monkeys Plasma Species Sulfation Taurine Toxicity Urine |
Title | Species differences in bile acids I. Plasma and urine bile acid composition |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjat.3644 https://www.ncbi.nlm.nih.gov/pubmed/29785833 https://www.proquest.com/docview/2089809375 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90T4L4Mb-qUyLIntatTT_S-ia6MRFk4IS9lTRJYYJV7Paw_95L064MEQSf8tA0hFzu7ndH7ncAN36YCldKaUcqDW0_DFM7VtxFdU9jzoViUuh8x_iFPc-ih6Gmybmta2EMP8Q64aY1o7TXWsF5Wgwa0tA3vuh76M3R_GKQUFZveJOGbzcu26pqxizb99is5p116KD-cdMT_YCXm2i1dDej_f9s9AD2KpBJ7sytOIQtlbehOzEs1asemTZFV0WPdMmk4a9etWHXpPKIqVA6gqeyR70qSN1MBU0Lmeckxd0QLuayII99MkEY_s4JzyXRCXzVfCb62Xr1NuwYXkfD6f3Yrnow2AJdu2-jN2dCZtLlGAkyhtFT5gSOwKgyEg5KNVMeZUxEqROWcC6lPJauK2OqIp3P8E6glX_k6gyIqzIaiYBlAceYT6g4EDxkMkB36XuITCy4ruWRfBqqjcSQKtMEzzDRZ2hBpxZUUilbkVAniiMHcVZgwakR3noBilGyLiyzoFvK6NeVEzSHejz_68QL2EHwZLhx3Q60Fl9LdQnbhVxelVfxG-2d3lI |
link.rule.ids | 315,782,786,1408,27935,27936,46066,46490 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5sPSiIj_qKzxWkp6bNexM8iba0tErBCt7CZncDFYxi2kP_vbPZpkFEEDzlkGRZdnb2-2bY-Qbg2gsSbgshzFAmgekFQWJGktno7knEGJdUcJXv6D_Rx5fwvqtkcm7KWhitD7FKuCnPKM5r5eAqId2pVENf2aztIpzXYN0LvEj1bXDdcaW4GxWNVZVmlum59KVUnrWcTvnndyz6QTC_89UCcHo7_5rqLmwveSa51RtjD9Zk1oDmWAtVL1pkUtVd5S3SJONKwnrRgC2dzSO6SGkfhkWbepmTsp8Kni5kmpEEp0MYn4qcDNpkjEz8jRGWCaJy-LJ6TdTN9eX1sAN47nUnd31z2YbB5IjunomATrlIhc0wGKQUA6jU8i2OgWXILTRsKl2HUh4mVlAwusRhkbBtETkyVCkN9xDq2Xsmj4HYMnVC7tPUZxj2cRn5nAVU-IiYnovkxICr0iDxh1bbiLWushPjGsZqDQ04Ky0VL_0tjx0rjEILqZZvwJG23moABwNlVVtmQLMw0q8jx3giqufJXz-8hI3-5GEUjwaPw1PYRC6lpXLtM6jPPufyHGq5mF8U-_IL9_ficw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50BRHE92N9RpA9WbfvpN7E3UVRpKCCt5AmKShYF7t72H_vpNluWUQQPPXQNoRMJt83Q-YbgPMwzqSnlHKYzmInjOPMSbTw0N2zRAipqZIm33H7RB9fWa9vZHKu6loYqw8xS7gZz6jOa-PgQ5V3G9HQdzG6DBDNF2EpNCzclG8EaSO4m1R9VY1klhMG9LUWnnX9bv3nPBT94JfzdLXCm8H6f2a6AWtTlkmu7bbYhAVdbEEntTLVkwvy3FRdlRekQ9JGwHqyBas2l0dsidI23FdN6nVJ6m4qeLaQt4JkOBsi5Jsqyd0lSZGHfwgiCkVMBl83r4m5tz69HLYDL4P-882tM23C4EjE9tBBOKdS5coTGApSiuFT7kauxLCSSRfNmuvAp1SyzI0rPpf5IlGepxJfM5PQCHahVXwWeh-Ip3OfyYjmkcCgT-okkiKmKkK8DAOkJm04q-3Bh1Zrg1tVZZ_jGnKzhm04qg3Fp95Wct9lCXORaEVt2LPGmw3gY5hsKsva0Kls9OvIHM9D8zz464ensJz2Bvzh7vH-EFaQSFmdXO8IWqOvsT6GxVKNT6pd-Q1ieeEi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Species+differences+in+bile+acids+I.+Plasma+and+urine+bile+acid+composition&rft.jtitle=Journal+of+applied+toxicology&rft.au=Thakare%2C+Rhishikesh&rft.au=Alamoudi%2C+Jawaher+Abdullah&rft.au=Gautam%2C+Nagsen&rft.au=Rodrigues%2C+A.+David&rft.date=2018-10-01&rft.issn=0260-437X&rft.eissn=1099-1263&rft.volume=38&rft.issue=10&rft.spage=1323&rft.epage=1335&rft_id=info:doi/10.1002%2Fjat.3644&rft.externalDBID=10.1002%252Fjat.3644&rft.externalDocID=JAT3644 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0260-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0260-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0260-437X&client=summon |