Biaxial Elongation Behavior in Partially Molted State of Two-Layer Sheets Containing Postconsumer Material

Due to the lack of raw material and forced by political demand, an increasing percentage of postconsumer materials (PCR) shall be used in all processing methods in polymer technology. Thermoforming, as one of the oldest polymer-processing methods, has special requirements regarding the melt stabilit...

Full description

Saved in:
Bibliographic Details
Published in:Polymers Vol. 14; no. 15; p. 3172
Main Authors: Wittmann, Lisa-Maria, Kaschta, Joachim, Drummer, Dietmar
Format: Journal Article
Language:English
Published: Basel MDPI AG 03-08-2022
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Due to the lack of raw material and forced by political demand, an increasing percentage of postconsumer materials (PCR) shall be used in all processing methods in polymer technology. Thermoforming, as one of the oldest polymer-processing methods, has special requirements regarding the melt stability at high temperatures. Low melt stability affects the thermoforming in a negative manner, as the low stiffness leads the sheet to sag during the heating phase. In this study, two-layer sheets are used in order to improve melt stability of PCR material. The focus is placed on the influence of rheological properties on the biaxial stretching behavior of mono- and two-layer sheets in partially molted state. In order to create a stabilizing layer, two different thermoformable virgin materials with a melt flow rate (MFR) of 3 g/10 min and 6 g/10 min were chosen. The second layer consists of instable PCR materials with a MFR of 16 g/10min and 50 g/10 min. Rheological investigations, molecular characterization and biaxial stretching tests are used to show the benefit of two-layer sheets for processing PCR material under elongational stress. The results show that the use of two-layer sheets can improve the biaxial stretching properties, so that two-layer sheets can offer a significant potential in the processing of PCR materials in thermoforming.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2073-4360
2073-4360
DOI:10.3390/polym14153172