Design and evolution of a piezoelectrically actuated miniature swimming vehicle

This work details the design of a miniature swimming vehicle that propels itself through oscillations of a flexible fin mounted in the stern. The fin is driven through a mechanism that is actuated by two curved-beam bending piezoelectric actuators. An optimization routine is used to design the mecha...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ASME transactions on mechatronics Vol. 8; no. 1; pp. 66 - 76
Main Authors: Borgen, M.G., Washington, G.N., Kinzel, G.L.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01-03-2003
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work details the design of a miniature swimming vehicle that propels itself through oscillations of a flexible fin mounted in the stern. The fin is driven through a mechanism that is actuated by two curved-beam bending piezoelectric actuators. An optimization routine is used to design the mechanism for rigid body guidance. The actuators are modeled statically using the Bernoulli-Euler method. Hamilton's principle is applied to the actuators and, by employing the modal analysis, a dynamic actuator model is developed and compared to experimental data. The physical evolution of the swimming vehicle is discussed, and a prototype for an on-board digital control circuit is evaluated. The latest vehicle design, which incorporates on-board digital control, is presented in terms of its design and experimentally determined the performance characteristics. The current swimming vehicle prototype achieves fish-like maneuvering and an approximate velocity of 0.25 m/s.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1083-4435
1941-014X
DOI:10.1109/TMECH.2003.809131