Neonatal hypoxia impairs serotonin release and cognitive functions in adult mice

Children who experienced moderate perinatal asphyxia (MPA) are at risk of developing long lasting subtle cognitive and behavioral deficits, including learning disabilities and emotional problems. The prefrontal cortex (PFC) regulates cognitive flexibility and emotional behavior. Neurons that release...

Full description

Saved in:
Bibliographic Details
Published in:Neurobiology of disease Vol. 193; p. 106465
Main Authors: Lee, Karen Ka Yan, Chattopadhyaya, Bidisha, do Nascimento, Antônia Samia Fernandes, Moquin, Luc, Rosa-Neto, Pedro, Amilhon, Bénédicte, Di Cristo, Graziella
Format: Journal Article
Language:English
Published: United States Elsevier Inc 01-04-2024
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Children who experienced moderate perinatal asphyxia (MPA) are at risk of developing long lasting subtle cognitive and behavioral deficits, including learning disabilities and emotional problems. The prefrontal cortex (PFC) regulates cognitive flexibility and emotional behavior. Neurons that release serotonin (5-HT) project to the PFC, and compounds modulating 5-HT activity influence emotion and cognition. Whether 5-HT dysregulations contribute to MPA-induced cognitive problems is unknown. We established a MPA mouse model, which displays recognition and spatial memory impairments and dysfunctional cognitive flexibility. We found that 5-HT expression levels, quantified by immunohistochemistry, and 5-HT release, quantified by in vivo microdialysis in awake mice, are reduced in PFC of adult MPA mice. MPA mice also show impaired body temperature regulation following injection of the 5-HT1A receptor agonist 8-OH-DPAT, suggesting the presence of deficits in 5-HT auto-receptor function on raphe neurons. Finally, chronic treatment of adult MPA mice with fluoxetine, an inhibitor of 5-HT reuptake transporter, or the 5-HT1A receptor agonist tandospirone rescues cognitive flexibility and memory impairments. All together, these data demonstrate that the development of 5-HT system function is vulnerable to moderate perinatal asphyxia. 5-HT hypofunction might in turn contribute to long-term cognitive impairment in adulthood, indicating a potential target for pharmacological therapies. •Serotonergic system development is vulnerable to perinatal hypoxia.•Pharmacological serotonin modulations rescued memory and cognitive flexibility.•Serotonergic system hypofunction may contribute to long-term cognitive problems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0969-9961
1095-953X
DOI:10.1016/j.nbd.2024.106465