RF, DC, and Reliability Performance of MIM Capacitors Embedded in Organic Substrates by Wafer-Transfer Technology (WTT) for System-on-Package Applications

In this paper, radio frequency (RF), dc, and reliability performance have been studied on metal-insulator-metal (MIM) capacitors embedded in organic substrates. The MIM structure including ~74-nm SiN dielectric was prefabricated on Si and then transferred onto organic substrates (FR-4) by wafer-tran...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices Vol. 54; no. 3; pp. 425 - 432
Main Authors: Liao, E.B., Hongyu Li, Guo, L.H., Guo-Qiang Lo, Kumar, R., Balasubramanian, N., Dim-Lee Kwong
Format: Journal Article
Language:English
Published: New York, NY IEEE 01-03-2007
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, radio frequency (RF), dc, and reliability performance have been studied on metal-insulator-metal (MIM) capacitors embedded in organic substrates. The MIM structure including ~74-nm SiN dielectric was prefabricated on Si and then transferred onto organic substrates (FR-4) by wafer-transfer technology (WTT). The RF characteristics up to 30 GHz were investigated by equivalent lumped circuit modeling, showing that the parameters associated with the MIM layers including the main capacitance, parasitic inductance, and resistance were only slightly changed by the WTT process. The substrate-related parasitics were reduced as a result of the replacement of lossy Si with insulating FR-4 substrates. Excellent capacitance linearity, low voltage coefficient (~2.2 ppm/V 2 ), and temperature coefficient (~38 ppm/degC) were obtained for capacitors on FR-4 substrates. Current-voltage and time-dependent dielectric breakdown tests verified that, after the harsh processes of WTT, the MIM structures maintained the intrinsic reliability as those originally fabricated on Si. This paper, along with earlier reports, proved that WTT presented a new dimension to realize embedded capacitors for high-density circuit board and system-on-package applications
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2006.890233