Stable Zinc Anodes Enabled by a Zincophilic Polyanionic Hydrogel Layer
The practical application of the Zn‐metal anode for aqueous batteries is greatly restricted by catastrophic dendrite growth, intricate hydrogen evolution, and parasitic surface passivation. Herein, a polyanionic hydrogel film is introduced as a protective layer on the Zn anode with the assistance of...
Saved in:
Published in: | Advanced materials (Weinheim) Vol. 34; no. 27; pp. e2202382 - n/a |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Germany
Wiley Subscription Services, Inc
01-07-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The practical application of the Zn‐metal anode for aqueous batteries is greatly restricted by catastrophic dendrite growth, intricate hydrogen evolution, and parasitic surface passivation. Herein, a polyanionic hydrogel film is introduced as a protective layer on the Zn anode with the assistance of a silane coupling agent (denoted as Zn–SHn). The hydrogel framework with zincophilic –SO3− functional groups uniformizes the zinc ions flux and transport. Furthermore, such a hydrogel layer chemically bonded on the Zn surface possesses an anti‐catalysis effect, which effectively suppresses both the hydrogen evolution reaction and formation of Zn dendrites. As a result, stable and reversible Zn stripping/plating at various currents and capacities is achieved. A full cell by pairing the Zn–SHn anode with a NaV3O8·1.5 H2O cathode shows a capacity of around 176 mAh g−1 with a retention around 67% over 4000 cycles at 10 A g−1. This polyanionic hydrogel film protection strategy paves a new way for future Zn‐anode design and safe aqueous batteries construction.
A unique polyanionic hydrogel is employed as an artificial protective layer for reversible Zn‐metal anodes. The polyanions in the hydrogel framework facilitate a homogeneous zinc‐ion flux, and the Zn–O bonding strengthens the interface and suppresses surface corrosion and irregular Zn dendrites growth. This strategy could apply also to other aqueous metal batteries. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0935-9648 1521-4095 |
DOI: | 10.1002/adma.202202382 |