TDFPS-Designer: an efficient toolkit for barcode design and selection in nanopore sequencing

Oxford Nanopore Technologies (ONT) offers ultrahigh-throughput multi-sample sequencing but only provides barcode kits that enable up to 96-sample multiplexing. We present TDFPS-Designer, a new toolkit for nanopore sequencing barcode design, which creates significantly more barcodes: 137 with a lengt...

Full description

Saved in:
Bibliographic Details
Published in:Genome Biology Vol. 25; no. 1; pp. 285 - 18
Main Authors: Qi, Junhai, Li, Zhengyi, Zhang, Yao-zhong, Li, Guojun, Gao, Xin, Han, Renmin
Format: Journal Article
Language:English
Published: London BioMed Central 04-11-2024
BMC
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Oxford Nanopore Technologies (ONT) offers ultrahigh-throughput multi-sample sequencing but only provides barcode kits that enable up to 96-sample multiplexing. We present TDFPS-Designer, a new toolkit for nanopore sequencing barcode design, which creates significantly more barcodes: 137 with a length of 20 base pairs, 410 at 24 bp, and 1779 at 30 bp, far surpassing ONT's offerings. It includes GPU-based acceleration for ultra-fast demultiplexing and designs robust barcodes suitable for high-error ONT data. TDFPS-Designer outperforms current methods, improving the demultiplexing recall rate by 20% relative to Guppy, without a reduction in precision.Oxford Nanopore Technologies (ONT) offers ultrahigh-throughput multi-sample sequencing but only provides barcode kits that enable up to 96-sample multiplexing. We present TDFPS-Designer, a new toolkit for nanopore sequencing barcode design, which creates significantly more barcodes: 137 with a length of 20 base pairs, 410 at 24 bp, and 1779 at 30 bp, far surpassing ONT's offerings. It includes GPU-based acceleration for ultra-fast demultiplexing and designs robust barcodes suitable for high-error ONT data. TDFPS-Designer outperforms current methods, improving the demultiplexing recall rate by 20% relative to Guppy, without a reduction in precision.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1474-760X
1474-7596
1474-760X
DOI:10.1186/s13059-024-03423-3