Application of Acid and Cold Stresses to Enhance the Production of Clavulanic Acid by Streptomyces clavuligerus

Clavulanic acid (CA) is frequently prescribed for treatment of bacterial infections. Despite the large number of studies concerning CA production, there is still a need to search for more effective and productive processes because it is mainly produced by biochemical route and is chemically unstable...

Full description

Saved in:
Bibliographic Details
Published in:Applied biochemistry and biotechnology Vol. 188; no. 3; pp. 706 - 719
Main Authors: Rodrigues, K. C. S., Costa, C. L. L., Badino, A. C., Pedrolli, D. B., Pereira, J. F. B., Cerri, M. O.
Format: Journal Article
Language:English
Published: New York Springer US 01-07-2019
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Clavulanic acid (CA) is frequently prescribed for treatment of bacterial infections. Despite the large number of studies concerning CA production, there is still a need to search for more effective and productive processes because it is mainly produced by biochemical route and is chemically unstable. This paper evaluates the influence of acid and cold stresses on CA production by Streptomyces clavuligerus in bench scale stirred tank bioreactor. Four batch cultures were conducted at constant pH (6.8 or 6.3) and temperature (30, 25, or 20 °C) and five batch cultures were performed with application of acid stress (pH reduction from 6.8 to 6.3), cold stress (reduction from 30 to 20 °C), or both. The highest maximum CA concentration (684.4 mg L −1 ) was obtained in the culture conducted at constant temperature of 20 °C. However, the culture under acid stress, in which the pH was reduced from 6.8 to 6.3 at a rate of 0.1 pH unit every 6 h, provided the most promising result, exhibiting a global yield coefficient of CA relative to cell formation ( Y CA/X ) of 851.1 mg CA  g X −1 . High Y CA/X values indicate that a small number of cells are able to produce a large amount of antibiotic with formation of smaller amounts of side byproducts. This could be especially attractive for decreasing the complexity and cost of the downstream processing, enhancing CA production.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0273-2289
1559-0291
DOI:10.1007/s12010-019-02953-y