A novel route for catalytic activation of peroxymonosulfate by oxygen vacancies improved bismuth-doped titania for the removal of recalcitrant organic contaminant
In this work, bismuth-doped titania (Bi x TiO 2 ) with improved oxygen vacancies was synthesized by sol-gel protocol as a novel peroxymonosulfate (PMS, HSO 5 − ) activator. HSO 5 − and adsorbed oxygen molecules could efficiently be transformed into their respective radicals through defect ionization...
Saved in:
Published in: | Environmental science and pollution research international Vol. 28; no. 18; pp. 23368 - 23385 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01-05-2021
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In this work, bismuth-doped titania (Bi
x
TiO
2
) with improved oxygen vacancies was synthesized by sol-gel protocol as a novel peroxymonosulfate (PMS, HSO
5
−
) activator. HSO
5
−
and adsorbed oxygen molecules could efficiently be transformed into their respective radicals through defect ionization to attain charge balance after their trapping on oxygen vacancies of the catalyst. XRD study of Bi
x
TiO
2
with 5 wt% Bi (5BiT) revealed anatase, crystalline nature, and successful doping of Bi into TiO
2
crystal lattice. The particle size obtained from BET data and SEM observations was in good agreement. PL spectra showed the formation rates of
•
OH by 3BiT, 7BiT, 5BiTC, and 5BiT as 0.720, 1.200, 1.489, and 2.153 μmol/h, respectively. 5BiT catalyst with high surface area (216.87 m
2
g
−1
) and high porosity (29.81%) was observed the excellent HSO
5
−
activator. The catalytic performance of 0BiT, 3BiT, 5BiT, and 7BiT when coupled with 2 mM HSO
5
−
for recalcitrant flumequine (FLU) removal under dark was 10, 27, 55, and 37%, respectively. Only 5.4% decrease in catalytic efficiency was observed at the end of seventh cyclic run. Radical scavenging studies indicate that SO
4
•−
is the dominant species that caused 62.0% degradation. Moreover, strong interaction between Bi and TiO
2
through Bi-O-Ti bonds prevents Bi leaching (0.081 mg L
−1
) as shown by AAS. The kinetics, degradation pathways, ecotoxicity, and catalytic mechanism for recalcitrant FLU were also elucidated. Cost-efficient, environment-friendly, and high mineralization recommends this design strategy; Bi
x
TiO
2
/HSO
5
−
system is a promising advanced oxidation process for the aquatic environment remediation. |
---|---|
AbstractList | In this work, bismuth-doped titania (Bi
x
TiO
2
) with improved oxygen vacancies was synthesized by sol-gel protocol as a novel peroxymonosulfate (PMS, HSO
5
−
) activator. HSO
5
−
and adsorbed oxygen molecules could efficiently be transformed into their respective radicals through defect ionization to attain charge balance after their trapping on oxygen vacancies of the catalyst. XRD study of Bi
x
TiO
2
with 5 wt% Bi (5BiT) revealed anatase, crystalline nature, and successful doping of Bi into TiO
2
crystal lattice. The particle size obtained from BET data and SEM observations was in good agreement. PL spectra showed the formation rates of
•
OH by 3BiT, 7BiT, 5BiTC, and 5BiT as 0.720, 1.200, 1.489, and 2.153 μmol/h, respectively. 5BiT catalyst with high surface area (216.87 m
2
g
−1
) and high porosity (29.81%) was observed the excellent HSO
5
−
activator. The catalytic performance of 0BiT, 3BiT, 5BiT, and 7BiT when coupled with 2 mM HSO
5
−
for recalcitrant flumequine (FLU) removal under dark was 10, 27, 55, and 37%, respectively. Only 5.4% decrease in catalytic efficiency was observed at the end of seventh cyclic run. Radical scavenging studies indicate that SO
4
•−
is the dominant species that caused 62.0% degradation. Moreover, strong interaction between Bi and TiO
2
through Bi-O-Ti bonds prevents Bi leaching (0.081 mg L
−1
) as shown by AAS. The kinetics, degradation pathways, ecotoxicity, and catalytic mechanism for recalcitrant FLU were also elucidated. Cost-efficient, environment-friendly, and high mineralization recommends this design strategy; Bi
x
TiO
2
/HSO
5
−
system is a promising advanced oxidation process for the aquatic environment remediation. In this work, bismuth-doped titania (BixTiO2) with improved oxygen vacancies was synthesized by sol-gel protocol as a novel peroxymonosulfate (PMS, HSO5−) activator. HSO5− and adsorbed oxygen molecules could efficiently be transformed into their respective radicals through defect ionization to attain charge balance after their trapping on oxygen vacancies of the catalyst. XRD study of BixTiO2 with 5 wt% Bi (5BiT) revealed anatase, crystalline nature, and successful doping of Bi into TiO2 crystal lattice. The particle size obtained from BET data and SEM observations was in good agreement. PL spectra showed the formation rates of •OH by 3BiT, 7BiT, 5BiTC, and 5BiT as 0.720, 1.200, 1.489, and 2.153 μmol/h, respectively. 5BiT catalyst with high surface area (216.87 m2 g−1) and high porosity (29.81%) was observed the excellent HSO5− activator. The catalytic performance of 0BiT, 3BiT, 5BiT, and 7BiT when coupled with 2 mM HSO5− for recalcitrant flumequine (FLU) removal under dark was 10, 27, 55, and 37%, respectively. Only 5.4% decrease in catalytic efficiency was observed at the end of seventh cyclic run. Radical scavenging studies indicate that SO4•− is the dominant species that caused 62.0% degradation. Moreover, strong interaction between Bi and TiO2 through Bi-O-Ti bonds prevents Bi leaching (0.081 mg L−1) as shown by AAS. The kinetics, degradation pathways, ecotoxicity, and catalytic mechanism for recalcitrant FLU were also elucidated. Cost-efficient, environment-friendly, and high mineralization recommends this design strategy; BixTiO2/HSO5− system is a promising advanced oxidation process for the aquatic environment remediation. In this work, bismuth-doped titania (Bi TiO ) with improved oxygen vacancies was synthesized by sol-gel protocol as a novel peroxymonosulfate (PMS, HSO ) activator. HSO and adsorbed oxygen molecules could efficiently be transformed into their respective radicals through defect ionization to attain charge balance after their trapping on oxygen vacancies of the catalyst. XRD study of Bi TiO with 5 wt% Bi (5BiT) revealed anatase, crystalline nature, and successful doping of Bi into TiO crystal lattice. The particle size obtained from BET data and SEM observations was in good agreement. PL spectra showed the formation rates of OH by 3BiT, 7BiT, 5BiTC, and 5BiT as 0.720, 1.200, 1.489, and 2.153 μmol/h, respectively. 5BiT catalyst with high surface area (216.87 m g ) and high porosity (29.81%) was observed the excellent HSO activator. The catalytic performance of 0BiT, 3BiT, 5BiT, and 7BiT when coupled with 2 mM HSO for recalcitrant flumequine (FLU) removal under dark was 10, 27, 55, and 37%, respectively. Only 5.4% decrease in catalytic efficiency was observed at the end of seventh cyclic run. Radical scavenging studies indicate that SO is the dominant species that caused 62.0% degradation. Moreover, strong interaction between Bi and TiO through Bi-O-Ti bonds prevents Bi leaching (0.081 mg L ) as shown by AAS. The kinetics, degradation pathways, ecotoxicity, and catalytic mechanism for recalcitrant FLU were also elucidated. Cost-efficient, environment-friendly, and high mineralization recommends this design strategy; Bi TiO /HSO system is a promising advanced oxidation process for the aquatic environment remediation. |
Author | Khan, Javed Ali Gul, Ikhtiar Iqbal, Jibran Shah, Noor S. Gul, Saman Sayed, Murtaza Rehman, Faiza Bibi, Noorina |
Author_xml | – sequence: 1 givenname: Ikhtiar surname: Gul fullname: Gul, Ikhtiar email: ikhtiargul@uop.edu.pk organization: Radiation Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar – sequence: 2 givenname: Murtaza surname: Sayed fullname: Sayed, Murtaza email: murtazasayed@uop.edu.pk organization: Radiation Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar – sequence: 3 givenname: Noor S. surname: Shah fullname: Shah, Noor S. organization: Department of Environmental Sciences, COMSATS University Islamabad – sequence: 4 givenname: Faiza surname: Rehman fullname: Rehman, Faiza organization: Department of Chemistry, University of Poonch – sequence: 5 givenname: Javed Ali surname: Khan fullname: Khan, Javed Ali organization: Radiation Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar – sequence: 6 givenname: Saman surname: Gul fullname: Gul, Saman organization: Radiation Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar – sequence: 7 givenname: Noorina surname: Bibi fullname: Bibi, Noorina organization: Radiation Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar – sequence: 8 givenname: Jibran surname: Iqbal fullname: Iqbal, Jibran organization: College of Natural and Health Sciences, Zayed University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33443740$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctOJCEYhcnEydheXmAWE5JZo9zqwtIYR01MZuOsyQ9FtZgqaIHq2K8zTyra6uwmLAiH7z8ncI7QQYjBIfSd0TNGaXeeGRNNSyinhDGpOsK_oBVrmSSdVOoAraiSkjAh5SE6yvmRVlLx7hs6FFUTnaQr9PcCh7h1E05xKQ6PMWELBaZd8RaDLX4LxceA44g3LsXn3RxDzMs0QqXNDldl7QLegoVgvcvYz5tUDQdsfJ6X8kCGuKmn4gsED28B5cHh5Oa4henVNzkLk_UlQSg4pnXlLLYxFJh9qNoJ-jrClN3p-36M_vy6ur-8IXe_r28vL-6IlYwXojrDm3YE4aC3tqXAOVOmM42Vqh3algljRsV66wYn1EB5b8ygpGAdNGaUII7Rz71vfcDT4nLRj3FJoUZq3tQlWN_2leJ7yqaYc3Kj3iQ_Q9ppRvVrLXpfi66frd9q0bwO_Xi3Xszshs-Rjx4qIPZArldh7dK_7P_YvgBOgJ7r |
CitedBy_id | crossref_primary_10_1002_slct_202102770 crossref_primary_10_1016_j_seppur_2021_119286 crossref_primary_10_3390_app11156814 crossref_primary_10_1016_j_coesh_2022_100345 crossref_primary_10_1007_s11356_023_27316_3 crossref_primary_10_1080_09593330_2023_2220889 crossref_primary_10_1016_j_seppur_2021_118654 crossref_primary_10_1016_j_ccr_2024_215870 crossref_primary_10_1007_s11356_022_20174_5 crossref_primary_10_1016_j_cej_2022_140615 crossref_primary_10_1016_j_envpol_2021_118014 crossref_primary_10_1016_j_chemosphere_2021_132261 crossref_primary_10_1007_s10563_024_09426_1 crossref_primary_10_3390_nano12030394 crossref_primary_10_1007_s43153_022_00282_y crossref_primary_10_1016_j_jclepro_2023_136354 crossref_primary_10_1007_s11356_022_19435_0 |
Cites_doi | 10.1021/acscatal.6b02303 10.1039/b817364h 10.1016/j.cej.2018.09.009 10.1016/j.apcatb.2016.09.006 10.1039/b817247a 10.1016/j.chemosphere.2016.04.059 10.1016/j.cej.2019.123255 10.1016/j.jmmm.2014.08.031 10.1039/C7RA07841B 10.1002/chem.200901193 10.1016/j.jhazmat.2013.05.056 10.1016/j.chemosphere.2016.02.089 10.1021/acs.jpcc.7b09169 10.1016/j.scitotenv.2012.12.079 10.1016/j.apcatb.2005.12.010 10.1016/j.watres.2017.10.018 10.1016/j.jhazmat.2018.05.026 10.1016/S1003-6326(11)60719-X 10.1039/C6CY02317G 10.1021/acs.est.9b01449 10.1021/acs.est.5b05974 10.1016/j.cej.2017.01.132 10.1016/j.watres.2018.06.038 10.1016/j.apcatb.2016.04.003 10.1016/j.apcatb.2011.09.013 10.1016/j.watres.2013.06.023 10.1080/1062936X.2014.923041 10.1016/j.jcis.2011.01.093 10.1016/j.apcatb.2013.09.013 10.1016/j.jallcom.2009.07.007 10.1016/j.jhazmat.2016.08.021 10.1016/j.apcatb.2017.06.071 10.1016/j.jhazmat.2016.11.056 10.1039/C4CE01348D 10.1016/j.chemosphere.2019.01.049 10.1016/j.jhazmat.2016.06.004 10.1016/j.watres.2015.02.026 10.1016/j.watres.2015.08.011 10.1016/j.apcatb.2019.118557 10.1021/acs.est.8b00015 10.1021/es035121o 10.1016/j.molliq.2019.03.022 10.1016/j.cej.2018.04.175 10.1021/acs.est.6b02079 10.1016/j.molliq.2018.09.102 10.1016/j.watres.2017.02.016 10.1016/j.cemconres.2015.04.011 10.1039/c3nr00476g 10.1021/jp070821r 10.1016/j.jhazmat.2015.03.038 10.1016/j.apcatb.2017.06.016 10.1016/j.cej.2012.11.002 10.1016/j.cej.2018.02.125 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2021 Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
DBID | NPM AAYXX CITATION 3V. 7QL 7SN 7T7 7TV 7U7 7WY 7WZ 7X7 7XB 87Z 88E 88I 8AO 8C1 8FD 8FI 8FJ 8FK 8FL ABUWG AFKRA ATCPS AZQEC BENPR BEZIV BHPHI C1K CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ K60 K6~ K9. L.- M0C M0S M1P M2P M7N P64 PATMY PQBIZ PQBZA PQEST PQQKQ PQUKI PYCSY Q9U |
DOI | 10.1007/s11356-020-11497-2 |
DatabaseName | PubMed CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Pollution Abstracts Toxicology Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ABI/INFORM Global Health & Medical Collection (Alumni Edition) Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic |
DatabaseTitle | PubMed CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Environmental Sciences and Pollution Management Health Research Premium Collection Natural Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Medical Library (Alumni) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Business Collection Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ABI/INFORM Global (Corporate) ProQuest One Business Technology Research Database ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College Pollution Abstracts ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest Medical Library ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences Chemistry |
EISSN | 1614-7499 |
EndPage | 23385 |
ExternalDocumentID | 10_1007_s11356_020_11497_2 33443740 |
Genre | Journal Article |
GroupedDBID | --- -5A -5G -5~ -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 199 1N0 2.D 203 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 53G 5GY 5VS 67M 67Z 6NX 78A 7WY 7X7 7XC 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AAMRO AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZAB ABBBX ABBXA ABDZT ABECU ABEOS ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFO ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACREN ACSNA ACSVP ACTTH ACVWB ACWMK ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEEQQ AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV L8X LAS LLZTM M0C M1P M2P M4Y MA- ML. N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PATMY PF0 PQBIZ PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOS R89 R9I RHV RNI RNS ROL RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 Y6R YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z85 Z86 Z87 Z88 Z8P Z8Q Z8S ZMTXR ~02 ~KM AACDK AAEOY AAHBH AAJBT AASML AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU H13 NPM PQBZA AAYXX CITATION 7QL 7SN 7T7 7TV 7U7 7XB 8FD 8FK C1K FR3 K9. L.- M7N P64 PQEST PQUKI Q9U |
ID | FETCH-LOGICAL-c412t-97b256fa3ea8cc60a2219b7b5c496d6613bbf918cede39d028bbd94317a5bf4a3 |
IEDL.DBID | AEJHL |
ISSN | 0944-1344 |
IngestDate | Mon Nov 11 05:02:14 EST 2024 Thu Sep 12 17:38:11 EDT 2024 Wed Oct 16 00:43:20 EDT 2024 Sat Dec 16 12:10:02 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | Flumequine Water treatment Bismuth-doped titania activation under dark HSO Oxygen vacancy HSO5 − activation under dark |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-97b256fa3ea8cc60a2219b7b5c496d6613bbf918cede39d028bbd94317a5bf4a3 |
PMID | 33443740 |
PQID | 2525231868 |
PQPubID | 54208 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2525231868 crossref_primary_10_1007_s11356_020_11497_2 pubmed_primary_33443740 springer_journals_10_1007_s11356_020_11497_2 |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | Environmental science and pollution research international |
PublicationTitleAbbrev | Environ Sci Pollut Res |
PublicationTitleAlternate | Environ Sci Pollut Res Int |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | KhankhasaevaSTDambuevaDVDashinamzhilovaETGilAVicenteMATimofeevaMNFenton degradation of sulfanilamide in the presence of Al, Fe-pillared clay: catalytic behavior and identification of the intermediatesJ Hazard Mater201529321291:CAS:528:DC%2BC2MXkvVKqsLY%3D10.1016/j.jhazmat.2015.03.038 FengYWuDDengYZhangTShihKSulfate radical-mediated degradation of sulfadiazine by CuFeO2 rhombohedral crystal-catalyzed peroxymonosulfate: synergistic effects and mechanismsEnviron Sci Technol201650311931271:CAS:528:DC%2BC28XivFOls7k%3D10.1021/acs.est.5b05974 XiangQYuJWongPKQuantitative characterization of hydroxyl radicals produced by various photocatalystsJ Colloid Interface Sci20113571631671:CAS:528:DC%2BC3MXjtVGisLk%3D10.1016/j.jcis.2011.01.093 Zhang C, He H, Tanaka K-i (2006) Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature. Appl Catal B Environ 65:37–43 GuanY-HMaJRenY-MLiuY-LXiaoJ-YLinL-qZhangCEfficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicalsWater Res201347543154381:CAS:528:DC%2BC3sXht1WhtLjM10.1016/j.watres.2013.06.023 Rashad M, Rayan D, Turky A, Hessien M (2015) Effect of Co2+ and Y3+ ions insertion on the microstructure development and magnetic properties of Ni0.5Zn0.5Fe2O4 powders synthesized using co-precipitation method. J Magn Magn Mater 374:359–366 Liu Y, Guo H, Zhang Y, Tang W, Cheng X, Li W (2018) Heterogeneous activation of peroxymonosulfate by sillenite Bi25FeO40: singlet oxygen generation and degradation for aquatic levofloxacin. Chem Eng J 343:128–137 Jimenez-RelinqueECastelloteMQuantification of hydroxyl radicals on cementitious materials by fluorescence spectrophotometry as a method to assess the photocatalytic activityCem Concr Res2015741081151:CAS:528:DC%2BC2MXnslOktb0%3D10.1016/j.cemconres.2015.04.011 OhW-DDongZLimT-TGeneration of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospectsAppl Catal B Environ20161941692011:CAS:528:DC%2BC28Xns1eku70%3D10.1016/j.apcatb.2016.04.003 XuJ-JChenM-DFuD-GPreparation of bismuth oxide/titania composite particles and their photocatalytic activity to degradation of 4-chlorophenolTrans Nonferrous Metals Soc China2011213403451:CAS:528:DC%2BC3MXlsVymt78%3D10.1016/S1003-6326(11)60719-X MatzekLWTiptonMJFarmerATSteenADCarterKEUnderstanding electrochemically activated persulfate and its application to ciprofloxacin abatementEnviron Sci Technol201852587558831:CAS:528:DC%2BC1cXns1ejtb0%3D10.1021/acs.est.8b00015 Zeng L, Song W, Li M, Zeng D, Xie C (2014) Catalytic oxidation of formaldehyde on surface of HTiO2/HCTiO2 without light illumination at room temperature. Appl Catal B Environ 147:490–498 AndersenJPelaezMGuayLZhangZO'SheaKDionysiouDDNF-TiO2 photocatalysis of amitrole and atrazine with addition of oxidants under simulated solar light: emerging synergies, degradation intermediates, and reusable attributesJ Hazard Mater20132605695751:CAS:528:DC%2BC3sXht1ylu7fE10.1016/j.jhazmat.2013.05.056 Rodrigues-SilvaCManieroMGRathSGuimarãesJRDegradation of flumequine by the Fenton and photo-Fenton processes: evaluation of residual antimicrobial activitySci Total Environ201344533734610.1016/j.scitotenv.2012.12.079 FangGWuWLiuCDionysiouDDDengYZhouDActivation of persulfate with vanadium species for PCBs degradation: a mechanistic studyAppl Catal B Environ20172021111:CAS:528:DC%2BC28XhsV2jurrP10.1016/j.apcatb.2016.09.006 Ribao P, Corredor J, Rivero MJ, Ortiz I (2019) Role of reactive oxygen species on the activity of noble metal-doped TiO2 photocatalysts. J Hazard Mater 372:45–51 DuJBaoJLiuYLingHZhengHKimSHDionysiouDDEfficient activation of peroxymonosulfate by magnetic Mn-MGO for degradation of bisphenol AJ Hazard Mater20163201501591:CAS:528:DC%2BC28XhsVSlt7fK10.1016/j.jhazmat.2016.08.021 Rodrigues-SilvaCManieroMGRathSGuimarãesJRDegradation of flumequine by photocatalysis and evaluation of antimicrobial activityChem Eng J201322446521:CAS:528:DC%2BC38XhslyksLzJ10.1016/j.cej.2012.11.002 Sayed M, Arooj A, Shah NS, Khan JA, Shah LA, Rehman F, Arandiyan H, Khan AM, Khan AR (2018a) Narrowing the band gap of TiO2 by co-doping with Mn2+ and Co2+ for efficient photocatalytic degradation of enoxacin and its additional peroxidase like activity: a mechanistic approach. J Mol Liq 272:403–412 ChengXGuoHZhangYWuXLiuYNon-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubesWater Res201711380881:CAS:528:DC%2BC2sXisV2jtro%3D10.1016/j.watres.2017.02.016 Khan JA, Sayed M, Shah NS, Khan S, Zhang Y, Boczkaj G, Khan HM, Dionysiou DD (2020) Synthesis of eosin modified TiO2 film with co-exposed {001} and {101} facets for photocatalytic degradation of para-aminobenzoic acid and solar H2 production. Appl Catal B Environ 265:118557 Chun-Te Lin J, de Luna MDG, Aranzamendez GL, Lu M-C (2016) Degradations of acetaminophen via a K2S2O8-doped TiO2 photocatalyst under visible light irradiation. Chemosphere 155:388–394 AnipsitakisGPDionysiouDDRadical generation by the interaction of transition metals with common oxidantsEnviron Sci Technol200438370537121:CAS:528:DC%2BD2cXktFSnu78%3D10.1021/es035121o Shah NS, Khan JA, Sayed M, Khan ZUH, Ali HS, Murtaza B, Khan HM, Imran M, Muhammad N (2019) Hydroxyl and sulfate radical mediated degradation of ciprofloxacin using nano zerovalent manganese catalyzed S2O82−. Chem Eng J 356:199–209 Ding Y, Tang H, Zhang S, Wang S, Tang H (2016) Efficient degradation of carbamazepine by easily recyclable microscaled CuFeO2 mediated heterogeneous activation of peroxymonosulfate. J Hazard Mater 317:686–694 Alam U, Fleisch M, Kretschmer I, Bahnemann D, Muneer M (2017) One-step hydrothermal synthesis of Bi-TiO2 nanotube/graphene composites: an efficient photocatalyst for spectacular degradation of organic pollutants under visible light irradiation. Appl Catal B Environ 218:758–769 FengMQuRZhangXSunPSuiYWangLWangZDegradation of flumequine in aqueous solution by persulfate activated with common methods and polyhydroquinone-coated magnetite/multi-walled carbon nanotubes catalystsWater Res2015851101:CAS:528:DC%2BC2MXhsVyjtbfN10.1016/j.watres.2015.08.011 OhW-DDongZRonnGLimT-TSurface–active bismuth ferrite as superior peroxymonosulfate activator for aqueous sulfamethoxazole removal: performance, mechanism and quantification of sulfate radicalJ Hazard Mater201732571811:CAS:528:DC%2BC28XhvFylt7nO10.1016/j.jhazmat.2016.11.056 SilvaCGFariaJLAnatase vs. rutile efficiency on the photocatalytic degradation of clofibric acid under near UV to visible irradiationPhotochem Photobiol Sci200987057111:CAS:528:DC%2BD1MXlsFKqsLY%3D10.1039/b817364h Sayed M, Gul M, Shah NS, Khan JA, Khan ZUH, Rehman F, Khan AR, Rauf S, Arandiyan H, Yang CP (2019) In-situ dual applications of ionic liquid coated Co2+ and Fe3+ co-doped TiO2: superior photocatalytic degradation of ofloxacin at pilot scale level and enhanced peroxidase like activity for calorimetric biosensing. J Mol Liq 282:275–285 SuCDuanXMiaoJZhongYZhouWWangSShaoZMixed conducting perovskite materials as superior catalysts for fast aqueous-phase advanced oxidation: a mechanistic studyACS Catal201773883971:CAS:528:DC%2BC28XhvFGrt7nM10.1021/acscatal.6b02303 PanXYangM-QFuXZhangNXuY-JDefective TiO 2 with oxygen vacancies: synthesis, properties and photocatalytic applicationsNanoscale20135360136141:CAS:528:DC%2BC3sXmt1Sgtrg%3D10.1039/c3nr00476g Li H, Wang D, Wang P, Fan H, Xie T (2009) Synthesis and studies of the visible-light photocatalytic properties of near-monodisperse Bi-doped TiO2 nanospheres. Chem Eur J 15:12521–12527 Gul I, Sayed M, Shah NS, Khan JA, Polychronopoulou K, Iqbal J, Rehman F (2020) Solar light responsive bismuth doped titania with Ti3+ for efficient photocatalytic degradation of flumequine: synergistic role of peroxymonosulfate. Chem Eng J 384:123255 Koltsakidou Α, Antonopoulou M, Evgenidou E, Konstantinou I, Lambropoulou D (2017) Cytarabine degradation by simulated solar assisted photocatalysis using TiO2. Chem Eng J 316:823–831 QiCLiuXMaJLinCLiXZhangHActivation of peroxymonosulfate by base: implications for the degradation of organic pollutantsChemosphere20161512802881:CAS:528:DC%2BC28Xjs1ygsb4%3D10.1016/j.chemosphere.2016.02.089 Deng J, Ya C, Ge Y, Cheng Y, Chen Y, Xu M, Wang H (2018) Activation of peroxymonosulfate by metal (Fe, Mn, Cu and Ni) doping ordered mesoporous Co3O4 for the degradation of enrofloxacin. RSC Adv 8:2338–2349 DaiDYangZYaoYChenLJiaGLuoLHighly efficient removal of organic contaminants based on peroxymonosulfate activation by iron phthalocyanine: mechanism and the bicarbonate ion enhancement effectCat Sci Technol201779349421:CAS:528:DC%2BC2sXht1Oqtbw%3D10.1039/C6CY02317G LianJQiangZLiMBoltonJRQuJUV photolysis kinetics of sulfonamides in aqueous solution based on optimized fluence quantificationWater Res20157543501:CAS:528:DC%2BC2MXjsF2ktbY%3D10.1016/j.watres.2015.02.026 SirtoriCZapataAMalatoSGernjakWFernández-AlbaARAgüeraASolar photocatalytic treatment of quinolones: intermediates and toxicity evaluationPhotochem Photobiol Sci200986446511:CAS:528:DC%2BD1MXlsFKqsLs%3D10.1039/b817247a GolbamakiACassanoALombardoAMoggioYColafranceschiMBenfenatiEComparison of in silico models for prediction of Daphnia magna acute toxicitySAR QSAR Environ Res2014256736941:CAS:528:DC%2BC2cXhtVWgsLfM10.1080/1062936X.2014.923041 Peng J, Wang S (2007) Correlation between microstructure and performance of Pt/TiO2 catalysts for formaldehyde catalytic oxidation at ambient temperature: effects of hydrogen pretreatment. J Phys Chem C 111:9897–9904 Li H-F, Zhang N, Chen P, Luo M-F, Lu J-Q (2011) High surface area Au/CeO2 catalysts for low temperature formaldehyde oxidation. Appl Catal B Environ 110:279–285 Wu M-C, Chih J-S, Huang W-K (2014) Bismuth doping effect on TiO2 nanofibres for morphological change and photocatalytic performance. CrystEngComm 16:10692–10699 SongHYanLJiangJMaJZhangZZhangJLiuPYangTElectrochemical activation of persulfates 11497_CR23 11497_CR22 11497_CR25 C Sirtori (11497_CR44) 2009; 8 C Qi (11497_CR34) 2016; 151 11497_CR20 Y-H Guan (11497_CR15) 2013; 47 X Cheng (11497_CR5) 2017; 113 W-D Oh (11497_CR29) 2016; 194 X Pan (11497_CR31) 2013; 5 ST Khankhasaeva (11497_CR19) 2015; 293 J Lian (11497_CR24) 2015; 75 W-D Oh (11497_CR30) 2017; 325 11497_CR16 11497_CR18 11497_CR33 11497_CR36 11497_CR35 11497_CR32 G Fang (11497_CR11) 2017; 202 C Rodrigues-Silva (11497_CR38) 2013; 445 GP Anipsitakis (11497_CR3) 2004; 38 Q Xiang (11497_CR49) 2011; 357 J Du (11497_CR10) 2016; 320 J-J Xu (11497_CR50) 2011; 21 11497_CR27 11497_CR26 11497_CR47 11497_CR41 11497_CR40 11497_CR42 E Jimenez-Relinque (11497_CR17) 2015; 74 Y Feng (11497_CR13) 2016; 50 A Golbamaki (11497_CR14) 2014; 25 M Feng (11497_CR12) 2015; 85 H Song (11497_CR45) 2018; 128 H Lee (11497_CR21) 2016; 50 J Andersen (11497_CR2) 2013; 260 11497_CR39 D Dai (11497_CR7) 2017; 7 C Su (11497_CR46) 2017; 7 11497_CR52 11497_CR53 S Yang (11497_CR51) 2018; 350 11497_CR8 MN Ashiq (11497_CR4) 2009; 486 11497_CR9 11497_CR6 CG Silva (11497_CR43) 2009; 8 11497_CR1 LW Matzek (11497_CR28) 2018; 52 C Rodrigues-Silva (11497_CR37) 2013; 224 11497_CR48 |
References_xml | – volume: 7 start-page: 388 year: 2017 ident: 11497_CR46 publication-title: ACS Catal doi: 10.1021/acscatal.6b02303 contributor: fullname: C Su – volume: 8 start-page: 705 year: 2009 ident: 11497_CR43 publication-title: Photochem Photobiol Sci doi: 10.1039/b817364h contributor: fullname: CG Silva – ident: 11497_CR42 doi: 10.1016/j.cej.2018.09.009 – volume: 202 start-page: 1 year: 2017 ident: 11497_CR11 publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2016.09.006 contributor: fullname: G Fang – volume: 8 start-page: 644 year: 2009 ident: 11497_CR44 publication-title: Photochem Photobiol Sci doi: 10.1039/b817247a contributor: fullname: C Sirtori – ident: 11497_CR6 doi: 10.1016/j.chemosphere.2016.04.059 – ident: 11497_CR16 doi: 10.1016/j.cej.2019.123255 – ident: 11497_CR35 doi: 10.1016/j.jmmm.2014.08.031 – ident: 11497_CR8 doi: 10.1039/C7RA07841B – ident: 11497_CR22 doi: 10.1002/chem.200901193 – volume: 260 start-page: 569 year: 2013 ident: 11497_CR2 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2013.05.056 contributor: fullname: J Andersen – volume: 151 start-page: 280 year: 2016 ident: 11497_CR34 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.02.089 contributor: fullname: C Qi – ident: 11497_CR40 doi: 10.1021/acs.jpcc.7b09169 – volume: 445 start-page: 337 year: 2013 ident: 11497_CR38 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2012.12.079 contributor: fullname: C Rodrigues-Silva – ident: 11497_CR53 doi: 10.1016/j.apcatb.2005.12.010 – volume: 128 start-page: 393 year: 2018 ident: 11497_CR45 publication-title: Water Res doi: 10.1016/j.watres.2017.10.018 contributor: fullname: H Song – ident: 11497_CR36 doi: 10.1016/j.jhazmat.2018.05.026 – volume: 21 start-page: 340 year: 2011 ident: 11497_CR50 publication-title: Trans Nonferrous Metals Soc China doi: 10.1016/S1003-6326(11)60719-X contributor: fullname: J-J Xu – volume: 7 start-page: 934 year: 2017 ident: 11497_CR7 publication-title: Cat Sci Technol doi: 10.1039/C6CY02317G contributor: fullname: D Dai – ident: 11497_CR25 doi: 10.1021/acs.est.9b01449 – volume: 50 start-page: 3119 year: 2016 ident: 11497_CR13 publication-title: Environ Sci Technol doi: 10.1021/acs.est.5b05974 contributor: fullname: Y Feng – ident: 11497_CR20 doi: 10.1016/j.cej.2017.01.132 – ident: 11497_CR32 doi: 10.1016/j.watres.2018.06.038 – volume: 194 start-page: 169 year: 2016 ident: 11497_CR29 publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2016.04.003 contributor: fullname: W-D Oh – ident: 11497_CR23 doi: 10.1016/j.apcatb.2011.09.013 – volume: 47 start-page: 5431 year: 2013 ident: 11497_CR15 publication-title: Water Res doi: 10.1016/j.watres.2013.06.023 contributor: fullname: Y-H Guan – volume: 25 start-page: 673 year: 2014 ident: 11497_CR14 publication-title: SAR QSAR Environ Res doi: 10.1080/1062936X.2014.923041 contributor: fullname: A Golbamaki – volume: 357 start-page: 163 year: 2011 ident: 11497_CR49 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2011.01.093 contributor: fullname: Q Xiang – ident: 11497_CR52 doi: 10.1016/j.apcatb.2013.09.013 – volume: 486 start-page: 640 year: 2009 ident: 11497_CR4 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2009.07.007 contributor: fullname: MN Ashiq – volume: 320 start-page: 150 year: 2016 ident: 11497_CR10 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2016.08.021 contributor: fullname: J Du – ident: 11497_CR26 doi: 10.1016/j.apcatb.2017.06.071 – volume: 325 start-page: 71 year: 2017 ident: 11497_CR30 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2016.11.056 contributor: fullname: W-D Oh – ident: 11497_CR47 doi: 10.1039/C4CE01348D – ident: 11497_CR48 doi: 10.1016/j.chemosphere.2019.01.049 – ident: 11497_CR9 doi: 10.1016/j.jhazmat.2016.06.004 – volume: 75 start-page: 43 year: 2015 ident: 11497_CR24 publication-title: Water Res doi: 10.1016/j.watres.2015.02.026 contributor: fullname: J Lian – volume: 85 start-page: 1 year: 2015 ident: 11497_CR12 publication-title: Water Res doi: 10.1016/j.watres.2015.08.011 contributor: fullname: M Feng – ident: 11497_CR18 doi: 10.1016/j.apcatb.2019.118557 – volume: 52 start-page: 5875 year: 2018 ident: 11497_CR28 publication-title: Environ Sci Technol doi: 10.1021/acs.est.8b00015 contributor: fullname: LW Matzek – volume: 38 start-page: 3705 year: 2004 ident: 11497_CR3 publication-title: Environ Sci Technol doi: 10.1021/es035121o contributor: fullname: GP Anipsitakis – ident: 11497_CR41 doi: 10.1016/j.molliq.2019.03.022 – volume: 350 start-page: 484 year: 2018 ident: 11497_CR51 publication-title: Chem Eng J doi: 10.1016/j.cej.2018.04.175 contributor: fullname: S Yang – volume: 50 start-page: 10134 year: 2016 ident: 11497_CR21 publication-title: Environ Sci Technol doi: 10.1021/acs.est.6b02079 contributor: fullname: H Lee – ident: 11497_CR39 doi: 10.1016/j.molliq.2018.09.102 – volume: 113 start-page: 80 year: 2017 ident: 11497_CR5 publication-title: Water Res doi: 10.1016/j.watres.2017.02.016 contributor: fullname: X Cheng – volume: 74 start-page: 108 year: 2015 ident: 11497_CR17 publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2015.04.011 contributor: fullname: E Jimenez-Relinque – volume: 5 start-page: 3601 year: 2013 ident: 11497_CR31 publication-title: Nanoscale doi: 10.1039/c3nr00476g contributor: fullname: X Pan – ident: 11497_CR33 doi: 10.1021/jp070821r – volume: 293 start-page: 21 year: 2015 ident: 11497_CR19 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2015.03.038 contributor: fullname: ST Khankhasaeva – ident: 11497_CR1 doi: 10.1016/j.apcatb.2017.06.016 – volume: 224 start-page: 46 year: 2013 ident: 11497_CR37 publication-title: Chem Eng J doi: 10.1016/j.cej.2012.11.002 contributor: fullname: C Rodrigues-Silva – ident: 11497_CR27 doi: 10.1016/j.cej.2018.02.125 |
SSID | ssj0020927 |
Score | 2.4518719 |
Snippet | In this work, bismuth-doped titania (Bi
x
TiO
2
) with improved oxygen vacancies was synthesized by sol-gel protocol as a novel peroxymonosulfate (PMS, HSO
5
−... In this work, bismuth-doped titania (Bi TiO ) with improved oxygen vacancies was synthesized by sol-gel protocol as a novel peroxymonosulfate (PMS, HSO )... In this work, bismuth-doped titania (BixTiO2) with improved oxygen vacancies was synthesized by sol-gel protocol as a novel peroxymonosulfate (PMS, HSO5−)... |
SourceID | proquest crossref pubmed springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 23368 |
SubjectTerms | Acids Anatase Aquatic environment Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Biodegradation Bismuth Bonding strength Catalysts Chemistry Cobalt Contaminants Crystal lattices Degradation Dominant species Earth and Environmental Science Ecotoxicology Environment Environmental Chemistry Environmental cleanup Environmental Health Environmental science Flumequine Ionization Lattice vacancies Leaching Microorganisms Mineralization Organic contaminants Oxidation Oxidation process Oxygen Photocatalysis Porosity Research Article Scavenging Sol-gel processes Strong interactions (field theory) Titanium Titanium dioxide Waste Water Technology Water Management Water Pollution Control |
Title | A novel route for catalytic activation of peroxymonosulfate by oxygen vacancies improved bismuth-doped titania for the removal of recalcitrant organic contaminant |
URI | https://link.springer.com/article/10.1007/s11356-020-11497-2 https://www.ncbi.nlm.nih.gov/pubmed/33443740 https://www.proquest.com/docview/2525231868 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7YULj5bShYLmwK01SmJ7Ex9XdKsVQr2USu0p8itixTapNknF_h1-KeMkuytUOIByiJzEdqQZz3wezwPgQ0hSZzKSfmEDxISPHTMmlSz1sZXWZ9r4YNOdX6WXN9n5LKTJ4VvTRfn94-ZEshPUu1i3mMvgLxsxgvAqZSR390n3SDmC_ens8_zLdp8Vqb5SqxKCxVyIIVbmz6P8ro8egcxHB6Sd3rl4_l9__AKeDTATpz1fvIQ9Xx7A0WwX1UYvh2VdH8LPKZbVg1_iqmobj4RjsTPrrKk3hsiH3m6LVYEhr_iPNfFuVbfLgoAqmjXSE-JDfNC2q_Vb46IzVXiHZlHftc035qp7aoWAtnKhuwkIeOLK31XE6WFcErx6aRcNqc4G-1JTFoMfve59dV7B9cXs66c5G4o3MCvipGEqNYSmCs29zqydRDoh2WhSI61QE0eogBtTqDiz3nmuHMEcY5wKcEZLUwjNj2BUVqU_BpTKWcknmcgIixgX6ULJgtoTVRgCUH4MpxsS5vd9jo58l405ECEnIuQdEfJkDCcbKufDeq3zRNLFQ-mAMbzuKb8dihML8VREYzjb0HnX8e_zvPm3z9_C0yS4y3S-lCcwalatfwdPate-H_g73G9ub89_AXdE-Yk |
link.rule.ids | 315,782,786,27935,27936,41075,42144,48346,48349,49651,49654,52155 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9gAXKKWFhQI-9AaWktjexMcV3WoRpZe2UnuK_IpYaZtUm6Ri_05_acdO0lVVegDl5DzsSN94_Hk8D4ADn6ROZ6j9_AaIchdbqnUqaOpiI4zLlHbepjs_TU8ussOZT5PDh1iY4O0-HEkGTb0JdouZ8A6zEUUOL1OKinfLZzvnI9iaXlxeHt5vtCLZlWqVnNOYcd4Hy_y9l4cL0iOW-eiENCw8R6__75e34VVPNMm0k4w38MyVO7A328S14cN-Ytdv4XZKyurGLcmqahtHkMmSYNhZ49fExz50lltSFcRnFv-zRumt6nZZIFUlek3wDkoiuVEmVPutySIYK5wlelFftc1vaqtrbPmQtnKhwgBIPcnKXVUo675fVL1qaRYNLp4N6YpNGeI96VXnrbML50ezs-9z2pdvoIbHSUNlqpFPFYo5lRkziVSC2lGnWhhEzSIvYFoXMs6Ms45Ji0RHays9oVFCF1yxPRiVVeneAxHSGsEmGc-QjWgbqUKKAtsTWWikUG4MXwcM8-suS0e-ycfsQcgRhDyAkCdj2B9gzvsZW-eJwIv54gFjeNdBf98VQxliKY_G8G3AefPh0-N8-LfXv8CL-dmv4_z4x8nPj_Ay8c4zwbNyH0bNqnWf4Hlt28-9sN8B4_H8CQ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD7aQJr2srELWzcGfuBts0hiu4kfK2gBMSEkQNpb5KtWqSRVk6D17-yX7jhJWyHGwzTlyUlsJzoXfz4-F4DDkKROZ6j9wgaIchdbqnUqaOpiI4zLlHbBpnt2nV7-yE7GIU3OOoq_9XZfHUl2MQ0hS1NRH82tP9oEvsVMBOfZiCKelylFJbwdzGLI49uj85vTyXrTFcmubKvknMaM8z5w5u-jPFycHiHOR6el7SI0ef3_n78Dr3oASkYdx7yBZ654C7vjTbwbPuwFvnoHv0ekKO_djCzKpnYEES5pDT5L7E1CTERn0SWlJyHj-K8lcnVZNTOPEJboJcE7yKHkXpm2CnBFpq0Rw1mip9VdU_-ktpxjK4S6FVPVToCQlCzcXYkyEMZFlaxmZlrjolqTrgiVIeF_VefF8x5uJ-Ob4zPal3WghsdJTWWqEWd5xZzKjBlGKkGtqVMtDJdDi3iBae1lnBlnHZMWAZDWVgago4T2XLFd2CrKwn0EIqQ1gg0zniFK0TZSXgqP7aH0GqGVG8DXFT3zeZe9I9_kaQ5EyJEIeUuEPBnA3orkeS_JVZ4IvFgoKjCADx0brIdiyE8s5dEAvq1ovun49Dyf_u31A3hxdTLJv59fXnyGl0nwqWkdLvdgq1407gs8r2yz3_P9H0AbBK8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+route+for+catalytic+activation+of+peroxymonosulfate+by+oxygen+vacancies+improved+bismuth-doped+titania+for+the+removal+of+recalcitrant+organic+contaminant&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Gul%2C+Ikhtiar&rft.au=Sayed%2C+Murtaza&rft.au=Shah%2C+Noor+S.&rft.au=Rehman%2C+Faiza&rft.date=2021-05-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0944-1344&rft.eissn=1614-7499&rft.volume=28&rft.issue=18&rft.spage=23368&rft.epage=23385&rft_id=info:doi/10.1007%2Fs11356-020-11497-2&rft.externalDocID=10_1007_s11356_020_11497_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-1344&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-1344&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-1344&client=summon |