Heavy metal speciation with prediction model for heavy metal mobility and risk assessment in mine-affected soils

Heavy metals from mines affect the soil and groundwater, and cause and severely impact on the health of local residents. The soil samples were characterized for the distribution and by the chemical speciation method, and then estimated the human health risks of the two mineaffected soils after stabi...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international Vol. 27; no. 3; pp. 3213 - 3223
Main Authors: Ahn, Yongtae, Yun, Hyun-Shik, Pandi, Kalimuthu, Park, Sanghyun, Ji, Minkyu, Choi, Jaeyoung
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 2020
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Heavy metals from mines affect the soil and groundwater, and cause and severely impact on the health of local residents. The soil samples were characterized for the distribution and by the chemical speciation method, and then estimated the human health risks of the two mineaffected soils after stabilization process.. Two extraction techniques (Tessier and Wenzel methods) were applied to fractionate metals, such as arsenic (As) and zinc (Zn), to quantify the chemical status of metals in the soils. The mobility of As and Zn was predicted using the ASTM test and sequential extraction (Tessier and Wenzel) method results. The correlation coefficients of As and Zn mobility prediction using Tessier and Wenzel Fraction 1 were 0.920 and 0.815, respectively. The sum of fractions F1 + F2 + F3 showed the highest correlation coefficients value and F value for mobility prediction of both As and Zn. The hazardous indices (HI) for non-carcinogenic risk and carcinogenic risk (CR) to humans were evaluated according to the pseudo-total concentrations of metal in soils. The CR values of carcinogenic for As were within the ranges from 1.38 × 10 −4 to 1.25 × 10 −3 and 3.71 × 10 −4 to 3.35 × 10 −3 for both Young Dong (YD) and Dea San (DS), respectively. The HI for non-carcinogenic risk was the highest for As in the YD (2.77) and DS (7.46) soils, which covered approximately 96 and 84% of HI, respectively. In summary, the contribution of As to risk from heavy metals was dominant.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-019-06922-0