Insulin-regulated Glucose Uptake in Rat Adipocytes Is Mediated by Two Transporter Isoforms Present in at Least Two Vesicle Populations

We have recently described a monoclonal antibody (1F8) that recognizes a form of glucose transporter unique to fat and muscle (James, D. E., Brown, R., Navarro, J., and Pilch, P. F. (1988) Nature 333, 183–185), tissues that respond acutely to insulin by markedly increasing their glucose uptake. Here...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry Vol. 264; no. 21; pp. 12358 - 12363
Main Authors: Zorzano, A, Wilkinson, W, Kotliar, N, Thoidis, G, Wadzinkski, B E, Ruoho, A E, Pilch, P F
Format: Journal Article
Language:English
Published: Bethesda, MD Elsevier Inc 25-07-1989
American Society for Biochemistry and Molecular Biology
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have recently described a monoclonal antibody (1F8) that recognizes a form of glucose transporter unique to fat and muscle (James, D. E., Brown, R., Navarro, J., and Pilch, P. F. (1988) Nature 333, 183–185), tissues that respond acutely to insulin by markedly increasing their glucose uptake. Here, we report that rat adipocytes possess two immunologically distinct glucose-transporters: one recognized by 1F8, and one reactive with antibodies raised against the human erythrocyte glucose transporter. Immunoadsorption experiments indicate that these glucose transporters reside in different vesicle populations and that both transporter isoforms translocate from intracellular sites to the plasma membrane in response to insulin. The insulin-regulatable transporter resides in a unique vesicle that comprises 3% or less of the low density microsomes of fat cells and has a limited protein composition that does not include the bulk of another translocatable protein, the insulin-like growth factor II receptor. Immunoprecipitation with 1F8 of microsomal glucose transporters photoaffinity labeled with [3H]cytochalasin B brings down 90% of the label. Similarly, immunoprecipitation with 1F8 of glucose transporters from insulin-stimulated plasma membranes photolabeled with 3-[125I]iodo-4-azidophenethylam-ido-7-O-succinyldeacetyl-forskolin, another transporter-selective reagent, results in 75% of the labeled transporter localized in the immunoprecipitate. Thus, insulin action involves the combined effect of translocation from at least two vesicle pools each containing different glucose transporters. The 1F8-reactive transporter comprises the majority of the total transporter pool that is responsible for the insulin-induced increase in glucose transporter number.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(18)63866-9