Flexible, High‐Wettability and Fire‐Resistant Separators Based on Hydroxyapatite Nanowires for Advanced Lithium‐Ion Batteries

Separators play a pivotal role in the electrochemical performance and safety of lithium‐ion batteries (LIBs). The commercial microporous polyolefin‐based separators often suffer from inferior electrolyte wettability, low thermal stability, and severe safety concerns. Herein, a novel kind of highly f...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) Vol. 29; no. 44
Main Authors: Li, Heng, Wu, Dabei, Wu, Jin, Dong, Li‐Ying, Zhu, Ying‐Jie, Hu, Xianluo
Format: Journal Article
Language:English
Published: Germany Wiley Subscription Services, Inc 01-11-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Separators play a pivotal role in the electrochemical performance and safety of lithium‐ion batteries (LIBs). The commercial microporous polyolefin‐based separators often suffer from inferior electrolyte wettability, low thermal stability, and severe safety concerns. Herein, a novel kind of highly flexible and porous separator based on hydroxyapatite nanowires (HAP NWs) with excellent thermal stability, fire resistance, and superior electrolyte wettability is reported. A hierarchical cross‐linked network structure forms between HAP NWs and cellulose fibers (CFs) via hybridization, which endows the separator with high flexibility and robust mechanical strength. The high thermal stability of HAP NW networks enables the separator to preserve its structural integrity at temperatures as high as 700 °C, and the fire‐resistant property of HAP NWs ensures high safety of the battery. In particular, benefiting from its unique composition and highly porous structure, the as‐prepared HAP/CF separator exhibits near zero contact angle with the liquid electrolyte and high electrolyte uptake of 253%, indicating superior electrolyte wettability compared with the commercial polyolefin separator. The as‐prepared HAP/CF separator has unique advantages of superior electrolyte wettability, mechanical robustness, high thermal stability, and fire resistance, thus, is promising as a new kind of separator for advanced LIBs with enhanced performance and high safety. A new kind of highly flexible, porous, high‐wettability, fire‐resistant hydroxyapatite nanowire‐based separator with superior performance and high safety is prepared for advanced lithium‐ion batteries. The batteries with the hydroxyapatite nanowire‐based separators show better cyclability and enhanced rate capability compared with those with the commercial polypropylene separator. The as‐prepared batteries adopting the hydroxyapatite nanowire‐based separator can safely work at 150 °C.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.201703548