Characterization of phosphate rock and phosphogypsum from Gabes phosphate fertilizer factories (SE Tunisia): high mining potential and implications for environmental protection

Since the establishment of the coastal industrial complex in Gabes city (Gulf of Gabes, SE Tunisia), hundred million tons of untreated phosphogypsum have been discharged in the open sea causing serious environmental problems. To better understand the dynamic and behavior of phosphate/phosphogypsum c...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international Vol. 25; no. 15; pp. 14690 - 14702
Main Authors: El Zrelli, Radhouan, Rabaoui, Lotfi, Daghbouj, Nabil, Abda, Heithem, Castet, Sylvie, Josse, Claudie, van Beek, Pieter, Souhaut, Marc, Michel, Sylvain, Bejaoui, Nejla, Courjault-Radé, Pierre
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01-05-2018
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Since the establishment of the coastal industrial complex in Gabes city (Gulf of Gabes, SE Tunisia), hundred million tons of untreated phosphogypsum have been discharged in the open sea causing serious environmental problems. To better understand the dynamic and behavior of phosphate/phosphogypsum contaminants from raw ores to marine environment, a chemical, organic, mineralogical, and morphological characterization of phosphate rock and phosphogypsum was conducted using several sophisticated techniques. The chemical analysis showed that phosphate and phosphogypsum contain high loads of trace elements and that the transfer factors of pollutants varied from 5.83% (U) to 140% (Hg). Estimated annual flows of phosphogypsum contaminants into the marine environment ranged between 0.05 (Re) and 87,249.60 (F) tons. The phosphate rock was found to be formed by carbonate fluorapatite, calcite, dolomite, natural gypsum, quartz, calcite-Mg, apatite, pyrite, fluorite, and sphalerite-Cd and phosphogypsum by synthetic gypsum and sphalerite-Cd. The phosphate was found to be richer in organic compounds compared to phosphogypsum. Based on this work, the Tunisian phosphogypsum has a high mining potential and encourages the development of an economically beneficial and environmentally friendly phosphogypsum-treating industry.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-018-1648-4