Bio-inspired blades with local trailing edge flexibility increase the efficiency of vertical axis wind turbines

This experimental study is focused on quantifying the effect of trailing edge flexibility on the performance of a three straight bladed vertical axis wind turbine, with a chord-to-diameter ratio c/D=0.16 at a moderately high Reynolds number (based on diameter) ReD=4⋅105. The blades consist of NACA-0...

Full description

Saved in:
Bibliographic Details
Published in:Energy reports Vol. 8; pp. 3244 - 3250
Main Authors: Somoano, M., Huera-Huarte, F.J.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01-11-2022
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This experimental study is focused on quantifying the effect of trailing edge flexibility on the performance of a three straight bladed vertical axis wind turbine, with a chord-to-diameter ratio c/D=0.16 at a moderately high Reynolds number (based on diameter) ReD=4⋅105. The blades consist of NACA-0015 profiles that are fixed with a pitch angle β=6∘ toe-out, and allow interchangeable trailing edges in the last 17% of their chord length. The research presented here provides a proof of concept for the improved performance of vertical axis wind turbines, due to the effect of flexibility at the trailing edge of their blades. We show that blades with semi-flexible trailing edge, can extend the range of rotor operating regimes, leading to an increase of approximately 10% in the performance of the turbine. An excess of flexibility results in diminished efficiencies.
ISSN:2352-4847
2352-4847
DOI:10.1016/j.egyr.2022.02.151