A combinatorial lemma and its applications
In this paper, we present a generalization of a combinatorial lemma we stated and proved in a recent work. Then we apply the generalized lemma to prove: (1) a theorem on the existence of a zero for an excess demand mapping, (2) the existence of a continuum of zeros for a parameterized excess demand...
Saved in:
Published in: | Journal of inequalities and applications Vol. 2016; no. 1; pp. 1 - 22 |
---|---|
Main Author: | |
Format: | Journal Article |
Language: | English |
Published: |
Cham
Springer International Publishing
31-03-2016
Springer Nature B.V SpringerOpen |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we present a generalization of a combinatorial lemma we stated and proved in a recent work. Then we apply the generalized lemma to prove: (1) a theorem on the existence of a zero for an excess demand mapping, (2) the existence of a continuum of zeros for a parameterized excess demand mapping, (3) Sperner’s lemma on labelings of triangulations. Proofs of these results are constructive: they contain algorithms (based on the combinatorial lemma) for the computation of objects of interest or, at least, of their approximations. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1029-242X 1025-5834 1029-242X |
DOI: | 10.1186/s13660-016-1043-y |