Frequency stability of the Israeli power grid with high penetration of renewable sources and energy storage systems

As countries worldwide are integrating more energy storage systems and renewable energy sources, it is important to examine how these impact the frequency stability of the grid. In this study we explore this question by focusing on Israel in 2025. Based on the Israeli power grid model in 2025, which...

Full description

Saved in:
Bibliographic Details
Published in:Energy reports Vol. 7; pp. 6148 - 6161
Main Authors: Ben Yosef, Gefen, Navon, Aviad, Poliak, Olga, Etzion, Naomi, Gal, Nurit, Belikov, Juri, Levron, Yoash
Format: Journal Article
Language:English
Published: Elsevier Ltd 01-11-2021
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As countries worldwide are integrating more energy storage systems and renewable energy sources, it is important to examine how these impact the frequency stability of the grid. In this study we explore this question by focusing on Israel in 2025. Based on the Israeli power grid model in 2025, which includes detailed information on the entire transmission network, generation units, and loads, we examine hundreds of different locations and sizes of renewable energy sources and energy storage systems, focusing on the frequency behavior in each scenario following the loss of a large generator. This is done using the industry-standard PSS/E simulator. The results lead to several design-level recommendations. One main conclusion is that the Israeli power system already has the required resources to maintain frequency stability in case a large generation unit is lost. However, to maintain a reliable system, policy makers should encourage that the existing and additional storage will contribute to frequency regulation when there is a risk of instability. We also find that the location of renewable energy sources and energy storage systems has an impact on the frequency stability, and that it is better to place storage systems in the south, and renewable energy sources in the north. However, at least until 2025 this impact is not yet strong enough to be a leading factor in determining the location of these sources.
ISSN:2352-4847
2352-4847
DOI:10.1016/j.egyr.2021.09.057