Spatio-temporal Variability of Soil Water at Three Seasonal Floodplain Sites: A Case Study in Tarim Basin, Northwest China

The floodplain vegetation of the Tarim River in Northwest China is strongly influenced by irrigated agriculture. The abstraction of river water disturbs the natural dynamics of the floodplain ecosystem. The human impact on the hydrological system by bank dams and the irrigation of cotton plantings h...

Full description

Saved in:
Bibliographic Details
Published in:Chinese geographical science Vol. 24; no. 6; pp. 647 - 657
Main Authors: Grashey-Jansen, Sven, Kuba, Martin, Cyffka, Bernd, Halik, Ümüt, Aishan, Tayierjiang
Format: Journal Article
Language:English
Published: Heidelberg Springer-Verlag 01-12-2014
Science Press
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The floodplain vegetation of the Tarim River in Northwest China is strongly influenced by irrigated agriculture. The abstraction of river water disturbs the natural dynamics of the floodplain ecosystem. The human impact on the hydrological system by bank dams and the irrigation of cotton plantings have caused adverse changes of the Tarim River and its floodplains, so the current stocks of the typical Tugai vegetation show significant signs of degradation. Field studies of soils and statistical analysis of soil moisture data have shown that the vitality of the Tugai vegetation is primarily determined by its position to the riverbank and the groundwater. There exist complex interactions between soil hydrological conditions and the vitality of the vegetation. But the availability of water is not only influenced by the groundwater level and seasonal flood events. The spatial distribution of stocks at different states of vitality seems also to be decisively influenced by physical soil properties. Our results show that the water supply of plant communities is strongly influenced by the soil texture. Spatial differences of soil moisture and corresponding soil water tensions may be the decisive factors for the zonation of vegetation. Physical soil properties control the water retention and rising of capillary water from deeper soil layers and the phreatic zone and may supply the root systems of the phreatophytic vegetation with water.
Bibliography:The floodplain -egetation of the Tarim River in Northwest China is strongly influenced by irrigated agriculture. The abstrac- tion of river water disturbs; the natural dynamics of the floodplain ecosystem. The human impact on the hydrological system by bank dams and the irrigation of cotton plantings have caused adverse changes of the Tarim River and its floodplains, so the current stocks of the typical Tugai vegetation show significant signs of degradation. Field studies of soils and statistical analysis of soil moisture data have shown that the vitality of the Tugai vegetation is primarily determined by its position to the riverbank and the groundwater. There exist complex interactions between soil hydrological conditions and the vitality of the vegetation. But the availability of water is not only influenced by the groundwater level and seasonal flood events. The spatial distribution of stocks at different states of vitality seems also to be decisively influenced by physical soil properties. Our results show that the water supply of plant communities is strongly in- fluenced by the soil texture. Spatial differences of soil moisture and corresponding soil water tensions may be the decisive factors for the zonafion of vegetation. Physical soil properties control the water retention and rising of capillary water from deeper soil layers and the phreatic zone and may supply the root systems of the phreatophytic vegetation with water. Keywords: soil moisture;soil texture; soil water tensions; Tarim River; water retention
22-1174/P
soil moisture; soil texture; soil water tensions; Tarim River; water retention
http://dx.doi.org/10.1007/s11769-014-0717-y
ISSN:1002-0063
1993-064X
DOI:10.1007/s11769-014-0717-y