A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles

Power train electrification is promoted as a potential alternative to reduce carbon intensity of transportation. Lithium-ion batteries are found to be suitable for hybrid electric vehicles (HEVs) and pure electric vehicles (EVs), and temperature control on lithium batteries is vital for long-term pe...

Full description

Saved in:
Bibliographic Details
Published in:Renewable & sustainable energy reviews Vol. 64; pp. 106 - 128
Main Authors: Wang, Qian, Jiang, Bin, Li, Bo, Yan, Yuying
Format: Journal Article
Language:English
Published: Elsevier Ltd 01-10-2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Power train electrification is promoted as a potential alternative to reduce carbon intensity of transportation. Lithium-ion batteries are found to be suitable for hybrid electric vehicles (HEVs) and pure electric vehicles (EVs), and temperature control on lithium batteries is vital for long-term performance and durability. Unfortunately, battery thermal management (BTM) has not been paid close attention partly due to poor understanding of battery thermal behaviour. Cell performance change dramatically with temperature, but it improves with temperature if a suitable operating temperature window is sustained. This paper provides a review on two aspects that are battery thermal model development and thermal management strategies. Thermal effects of lithium-ion batteries in terms of thermal runaway and response under cold temperatures will be studied, and heat generation methods are discussed with aim of performing accurate battery thermal analysis. In addition, current BTM strategies utilised by automotive suppliers will be reviewed to identify the imposing challenges and critical gaps between research and practice. Optimising existing BTMs and exploring new technologies to mitigate battery thermal impacts are required, and efforts in prioritising BTM should be made to improve the temperature uniformity across the battery pack, prolong battery lifespan, and enhance the safety of large packs.
ISSN:1364-0321
1879-0690
DOI:10.1016/j.rser.2016.05.033